

Marks of Objective, Short Notes, Distinguish Between, Descriptive \& Practical Questions

For detailed analysis Login at www.scannerclasses.com for registration and password see first page of this book.

3.4

Multiple Choice Questions and Answers

2006 - November

[1] Two numbers are in the ratio $2: 3$ and the difference of their squares is 320. The numbers are:
(a) 12,18
(b) 16, 24
(c) 14,21
(d) None.

Answer:

(b) Let numbers be $2 x$ and $3 x$.

Therefore, $(3 x)^{2}-(2 x)^{2}=320$

$$
\begin{aligned}
9 x^{2}-4 x^{2} & =320 \\
5 x^{2} & =320 \\
x^{2} & =64 \\
x & =8
\end{aligned}
$$

\therefore Numbers are: $2 x=2 \times 8=16$

$$
3 x=3 \times 8=24
$$

[2] If p : q is the sub-duplicate ratio of $p-x^{2}: q-x^{2}$, then x^{2} is :
(a) $\frac{p}{p+q}$
(b) $\frac{q}{p+q}$
(c) $\frac{q p}{p-q}$
(d) None.

Answer:

(d) As per the given information:

$$
\begin{aligned}
& \frac{p-x^{2}}{q-x^{2}}=\frac{p^{2}}{q^{2}} \\
& q^{2}\left(p-x^{2}\right)=P^{2}\left(q-x^{2}\right) \\
& p q^{2}-x^{2} q^{2}=p^{2} q-p^{2} x^{2} \\
& x^{2}\left(p^{2}-q^{2}\right)=p q(p-q)
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}=\frac{p q(p-q)}{p^{2}-q^{2}} \\
& x^{2}=\frac{p q}{p+q}
\end{aligned}
$$

[3] An alloy is to contain copper and zinc in the ratio 9:4. The zinc required to melt with 24 kg of copper is :
(a) $10 \frac{2}{3} \mathrm{~kg}$
(b) $10 \frac{1}{3} \mathrm{~kg}$
(C) $9 \frac{2}{3} \mathrm{~kg}$
(d) 9 kg
(1 mark)

Answer:

(a) Let the quantity of copper and zinc in an alloy be $9 x \mathrm{~kg}$. and 4 xg .

Therefore, $\quad 9 x=24$
$\mathrm{x}=\frac{24}{9}=\frac{8}{3}=2 \frac{2}{3} \mathrm{~kg}$.
So zinc $=4 \mathrm{x}=4 \times \frac{8}{3} \mathrm{~kg}$.
$=10 \frac{2}{3} \mathrm{~kg}$.
[4] $7 \log \left(\frac{16}{15}\right)+5 \log \left(\frac{25}{24}\right)+3 \log \left(\frac{81}{80}\right)$ is equal to :
(a) 0
(b) 1
(c) $\log 2$
(d) $\log 3$

Answer:
(c) $7 \log \left(\frac{16}{15}\right)+5 \log \left(\frac{25}{24}\right)+3 \log \left(\frac{81}{80}\right)$

$$
\begin{aligned}
= & 7(\log 16-\log 15)+5(\log 25-\log 24)+3 \log (\log 81-\log 80) \\
= & 7[4 \log 2-(\log 3+\log 5)]+5[2 \log 5-(3 \log 2+\log 3)] \\
& +3[4 \log 3-(4 \log 2+\log 5)] \\
= & 28 \log 2-7 \log 3-7 \log 5+10 \log 5-15 \log 2-5 \log 3 \\
& +12 \log 3-12 \log 2-3 \log 5=\log 2
\end{aligned}
$$

3.6

Solv ed Scanner CA Foundation Paper - 3A (New Syllabus)

2007 - February

[5] Two numbers are in the ratio 7:8. If 3 is added to each of them, their ratio becomes $8: 9$. The numbers are:
(a) 14,16
(b) 24,27
(c) 21,24
(d) 16,18
(1 mark)

Answer:

(c) Let the numbers be $7 x$ and $8 x$.

So, $\frac{7 x+3}{8 x+3}=\frac{8}{9}$
$9(7 x+3)=8(8 x+3)$
$63 x+27=64 x+24$
$x=3$
Numbers are: $7 x=7 \times 3=21$

$$
8 x=8 \times 3=24
$$

[6] A box contains ₹ 56 in the form of coins of one rupee, 50 paise and 25 paise. The number of 50 paise coin is double the number of 25 paise coins and four times the numbers of one rupee coins. The numbers of 50 paise coins in the box is :
(a) 64
(b) 32
(c) 16
(d) 14

Answer:

(a) Let the number of one - rupee coins be x.

Then, number of 50 paise coins is $4 x$ and number of 25 - paise coins is $2 x$
So,
$x+\frac{4 x}{2}+\frac{2 x}{4}=56$
$4 x+8 x+2 x=56 \times 4$
$14 x=224$
$x=\frac{224}{14}=16$
\therefore Number of 50 paise coins is $4 \times 16=64$

[Chapter "1-1] Ratio and Proportion, Indices...

3.7
[7] Value of $\left(a^{1 / 8}+a^{-1 / 8}\right)\left(a^{1 / 8}-a^{-1 / 8}\right)\left(a^{1 / 4}+a^{-1 / 4}\right)\left(a^{1 / 2}+a^{-1 / 2}\right)$ is :
(a) $a+\frac{1}{a}$
(b) $a-\frac{1}{a}$
(c) $\mathrm{a}^{2}+\frac{1}{\mathrm{a}^{2}}$
(d) $a^{2}-\frac{1}{a^{2}}$
(1 mark)
Answer:
(b) $\left(a^{1 / 8}+a^{-1 / 8}\right)\left(a^{1 / 8}-a^{-1 / 8}\right)\left(a^{1 / 4}+a^{-1 / 4}\right)\left(a^{1 / 2}+a^{-1 / 2}\right)$
$=\left(a^{1 / 4}-a^{-1 / 4}\right)\left(a^{1 / 4}+a^{-1 / 4}\right)\left(a^{1 / 2}+a^{-1 / 2}\right)$ [using $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$]
$=\left(a^{1 / 2}-a^{-1 / 2}\right)\left(a^{1 / 2}+a^{-1 / 2}\right)$
$=a^{1}-a^{-1}$
$=a-\frac{1}{a}$
[8] The value of the expression:
$a^{\log _{a} b \cdot \log _{b}^{c} \cdot \log _{c}^{d} \cdot \log _{d} t}$
(a) t
(b) abcdt
(c) $(\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}+\mathrm{t})$
(d) None.

Answer:
(a) $a^{\log _{a}^{b} \cdot \log _{b}^{c} \cdot \log _{c}^{d} \cdot \log _{d}^{d}}$

$$
\begin{aligned}
& a \frac{\log ^{b}}{\log ^{a}} \times \frac{\log ^{c}}{\log ^{b}} \cdot \frac{\log ^{d}}{\log ^{c}} \cdot \frac{\log ^{t}}{\log ^{d}}=\left[\text { using } \log a^{b}=\frac{\log ^{b}}{\log ^{a}}\right] \\
& =a \frac{\log ^{t}}{\log ^{a}} \\
& =a \log _{a}^{t} \\
& =\mathrm{t}\left[\text { using } a^{\log _{a}^{m}}=m\right]
\end{aligned}
$$

[9] If $\log _{10000} x=\frac{-1}{4}$, then x is given by:
(a) $\frac{1}{100}$
(b) $\frac{1}{10}$
(c) $\frac{1}{20}$
(d) None of these.

3.8 Solv ed Scanner CA Foundation Paper - 3A (New Syllabus)

Answer:
(b) $\log _{1000} x=-\frac{1}{4}$

$$
\begin{aligned}
\frac{(10,000)^{-1 / 4}}{} \mathrm{x} & =\left[u \operatorname{sing} \log \mathrm{a}^{\mathrm{b}}=x,=\mathrm{a}^{x}=\mathrm{b}\right. \\
(10,000)^{1 / 4} & =\mathrm{x} \\
& =\frac{1}{10}=\mathrm{x}
\end{aligned}
$$

2007 - MAY

[10] Eight people are planning to share equally the cost of a rental car. If one person withdraws from the arrangement and the others share equally entire cost of the car, then the share of each of the remaining persons increased by :
(a) $1 / 9$
(b) $1 / 8$
(c) $1 / 7$
(d) $7 / 8$
(1 mark)
Answer:
(c) When number of people $=8$
then, the share of each person $=\frac{1}{8}$ of the total cost.
When number of people $=7$
then, the share of each person $=\frac{1}{7}$ of the total cost
\therefore Increase in the share of each person $=\frac{1}{7}-\frac{1}{8}=\frac{1}{56}$ i.e.
$\frac{1}{7}$ of $\frac{1}{8}$, i.e. $\frac{1}{7}$ of the original share of each person.
[11] A bag contains ₹ 187 in the form of 1 rupee, 50 paise and 10 paise coins in the ratio $3: 4: 5$. Find the number of each type of coins:
(a) 102, 136, 170
(b) $136,102,170$
(c) $170,102,136$
(d) None.

[Chapter 1 II 1] Ratio and Proportion, Indices...

3.9

Answer:

(a) Let the number of coins be $3 x, 4 x$, and $5 x$.

$$
\begin{aligned}
& \text { Then, } 3 x+\frac{4 x}{2}+\frac{5 x}{10}=187 \\
& 30 x+20 x+5 x=187 \times 10 \\
& 55 x=1870 \\
& x=\frac{1870}{55}=34
\end{aligned}
$$

Number of coins:
One rupee $=3 x=3 \times 34=102$
50 paise $=4 x=4 \times 34=136$
10 paise $=5 x=5 \times 34=170$
[12] Simplification of $\frac{x^{m+3 n} \cdot x^{4 m-9 n}}{x^{6 m-6 n}}$ is :
(a) x^{m}
(b) x^{-m}
(c) x^{n}
(d) x^{-n}
(1 mark)

Answer:

(b) $\frac{x^{m+3 n} \cdot x^{4 m-9 n}}{x^{6 m-6 n}}$

$$
\begin{aligned}
& =\frac{x^{m+3 n+4 m-9 n}}{x^{6 m-6 n}}\left[\text { using } \frac{x^{a}-x^{b}}{x^{a+b}}\right] \\
& =\frac{x^{5 m-6 n}}{x^{6 m-6 n}} \\
& =x^{5 m-6 n-6 m+6 n}\left[\text { using } \frac{x^{a}}{x^{b}}=x^{a-b}\right] \\
& =x^{-m}
\end{aligned}
$$

[13] If $\log (2 a-3 b)=\log a-\log b$, then $a=$:
(a) $\frac{3 b^{2}}{2 b-1}$
(b) $\frac{3 b}{2 b-1}$
(c) $\frac{b^{2}}{2 b+1}$
(d) $\frac{3 b^{2}}{2 b+1}$

3.10 Solv ed Scanner CA Foundation Paper - 3A (New Syllabus)

Answer:

(a) $\log (2 a-3 b)=\log a-\log b$

$$
\log (2 a-3 b)=\log \left(\frac{a}{b}\right)
$$

$$
\begin{aligned}
& 2 a-3 b=\frac{a}{b} \\
& 2 a b-3 b^{2}=a \\
& 2 a b-a=3 b^{2} \\
& a(2 b-1)=3 b^{2} \\
& a=\frac{3 b^{2}}{2 b-1}
\end{aligned}
$$

2007 - August

[14] On simplification $\frac{1}{1+z^{a-b}+z^{a-c}}+\frac{1}{1+z^{b-c}+z^{b-a}}+\frac{1}{1+z^{c-a}+z^{c-b}}$ reduces to:
(a) $\frac{1}{z^{2(a+b+c)}}$
(b) $\frac{1}{z^{(a+b+c)}}$
(c) 1
(d) 0

Answer:
(c) $\frac{1}{1+z^{a-b}+z^{a-c}}+\frac{1}{1+z^{b-c}+z^{b-a}}+\frac{1}{1+z^{c-a}+z^{c-b}}$
$=\frac{1}{1+\frac{z^{-b}}{z^{-a}}+\frac{z^{-c}}{z^{-a}}}+\frac{1}{1+\frac{z^{-c}}{z^{-b}}+\frac{z^{-a}}{z^{-b}}}+\frac{1}{1+\frac{z^{-a}}{z^{-b}}+\frac{z^{-b}}{z^{-c}}}$
$=\frac{z^{-a}}{z^{-a}+z^{-b}+z^{-c}}+\frac{z^{-b}}{z^{-b}+z^{-c}+z^{-a}}+\frac{z^{-c}}{z^{-c}+z^{-a}+z^{-b}}$
$=\frac{z^{-a}+z^{-b}+z^{-c}}{z^{-a}+z^{-b}+z^{-c}}$
$=1$

[Chapter $\ln =1]$ Ratio and Proportion, Indices...

3.11
[15] Ratio of earnings of A and B is $4: 7$. If the earnings of A increase by 50% and those of B decrease by 25%, the new ratio of their earning becomes $8: 7$. What is A 's earning?
(a) ₹ 21,000
(b) ₹ 26,000
(c) ₹ 28,000
(d) Data inadequate.

Answer:

(d) Let the earning of A and B be $4 x$ and $7 x$ respectively.

New earning of $A=4 x \times 150 \%=6 x$
New earning of $B=7 x \times 75 \%=5.25 x$
Then, $\frac{6 x}{5.25 x}=\frac{8}{7}$
This does not give the value of x
So, the given data is inadequate.
[16] P, Q and R are three cities. The ratio of average temperature between P and Q is $11: 12$ and that between P and R is $9: 8$. The ratio between the average temperature of Q and R is :
(a) $22: 27$
(b) $27: 22$
(c) $32: 33$
(d) None.
(1 mark)
Answer:
(b) $\frac{P}{Q}=\frac{11}{12}$ and $\frac{P}{R}=\frac{9}{8}$
$\frac{\mathrm{P}}{\mathrm{Q}}=\frac{11 \times 9}{12 \times 9}=\frac{99}{108}$ and $\frac{\mathrm{P}}{\mathrm{R}}=\frac{9 \times 11}{8 \times 11}=\frac{99}{88}$
Therefore, $\frac{Q}{R}=\frac{108}{88}=\frac{27}{22}$
So, Q:R=27:22
[17] $\frac{1}{\log _{a b}(a b c)}+\frac{1}{\log _{b c}(\mathrm{abc})}+\frac{1}{\log _{c a}(\mathrm{abc})}$ is equal to :
(a) 0
(b) 1
(c) 2
(d) -1

3.12 Solv ed Scanner CA Foundation Paper - 3A (New Syllabus)

Answer:
(c) $\frac{1}{\log _{a b}^{(a b c)}}+\frac{1}{\log _{b c}^{(a b c)}}+\frac{1}{\log _{c a}^{(a b c)}}$
$=\frac{\frac{1}{\log (a b c)}}{\log (a b)}+\frac{1}{\log (a b c)}+\frac{1}{\log (b c)} \frac{\log (a b c)}{\log (c a)}$
$\left[\right.$ using $\left.\log _{a} b=\frac{\log b}{\log a}\right]$
$=\frac{\log (a b)}{\log (a b c)}+\frac{\log (b c)}{\log (a b c)}+\frac{\log (c a)}{\log (a b c)}$
$=\frac{\log (a b \times b c \times c a)}{\log a b c}$
$=\frac{\log \mathrm{a}^{2} \mathrm{~b}^{2} \mathrm{c}^{2}}{\log (\mathrm{abc})}$
$=\frac{\log (a b c)^{2}}{\log a b c}=\frac{2 \log (a b c)}{\log (a b c)}=2$
[18] Number of digits in the numeral for 2^{64}. [Given $\log 2=0.30103$]:
(a) 18 digits
(b) 19 digits
(c) 20 digits
(d) 21 digits.

Answer:
(c) 2^{64}
$=64 \log 2$
$=64 \times 0.30103$
$=19.26592$
\therefore Number of digit in $2^{64}=20$.

2007 - November

[19] ₹ 407 are to be divided among A, B and C so that their shares are in the ratio $\frac{1}{4}: \frac{1}{5}: \frac{1}{6}$. The respective shares of A, B, C are :

[Chapter $\|=1$ 1] Ratio and Proportion, Indices...

3.13
(a) ₹ 165 , ₹ 132 , ₹ 110
(b) ₹ 165 , ₹ 110 , ₹ 132
(c) ₹ 132 , ₹ 110 , ₹ 165
(d) ₹ 110 , ₹ 132 , ₹ 165

Answer:

(a) The ratio of share of A, B and C

$$
\begin{aligned}
& =\frac{1}{4}: \frac{1}{5}: \frac{1}{6} \\
& =\frac{15: 12: 10}{60}=15: 12: 10
\end{aligned}
$$

Therefore, A's share $=407 \times \frac{15}{37}=₹ 165$

$$
\begin{aligned}
& \text { B's share }=407 \times \frac{12}{37}=₹ 132 \\
& \qquad \text { C's share }=407 \times \frac{10}{37}=₹ 110
\end{aligned}
$$

[20] The incomes of A and B are in the ratio $3: 2$ and their expenditures in the ratio $5: 3$. If each saves $₹ 1,500$, then B 's income is :
(a) ₹ 6,000
(b) ₹ 4,500
(c) ₹ 3,000
(d) ₹ 7,500

Answer:

(a) Let the income of A and B be $3 x$ and $2 x$ respectively and expenditures of A and B be $5 y$ and $3 y$ respectively.
Therefore, $3 x-5 y=1500$ \qquad

$$
\begin{equation*}
2 x-3 y=1500 \tag{i}
\end{equation*}
$$

Solving (i) and (ii) Simultaneously
We get $x=3000$ and $y=1500$
Therefore, B's income $=2 x=2 \times 3,000=₹ 6,000$
[21] If $4^{x}=5^{y}=20^{z}$ then z is equal to :
(a) $x y$
(b) $\frac{x+y}{x y}$
(c) $\frac{1}{x y}$
(d) $\frac{x y}{x+y}$

3.14
 Solv ed Scanner CA Foundation Paper - 3A (New Syllabus)

Answer:

(d) $4^{x}=5^{y}=20^{z}=k$ (say)
$4=k^{1 / x}$
$5=k^{1 / y}$
$20=k^{1 / z}$

$$
\begin{array}{ll}
4 \times 5 & =20 \\
k^{1 / x} \times k^{1 / y} & =k^{1 / z} \\
k^{1 / x+1 / y} & =k^{1 / z}\left(\therefore x^{m} \times x^{n}=x^{m+n}\right) \\
k^{\frac{x+y}{x y}} & =k^{1 / z}
\end{array}
$$

Therefore, $=\frac{x+y}{x y}=\frac{1}{z}\left(\therefore x^{m}=x^{n} \quad \therefore m=n\right)$

$$
z=\frac{x y}{x+y}
$$

[22] $\left(\frac{\sqrt{3}}{9}\right)^{5 / 2}\left(\frac{9}{3 \sqrt{3}}\right)^{7 / 2} \times 9$ is equal to :
(a) 1
(b) $\sqrt{3}$
(c) $3 \sqrt{3}$
(d) $\frac{3}{9 \sqrt{3}}$

Answer:

(a) $\left(\frac{\sqrt{3}}{9}\right)^{\frac{5}{2}}\left(\frac{9}{3 \sqrt{3}}\right)^{\frac{7}{2}} \times 9$

$$
\begin{aligned}
& =\left(\frac{3^{\frac{1}{2}}}{3^{2}}\right)^{\frac{5}{2}}\left(\frac{3^{2}}{3.3^{\frac{1}{2}}}\right)^{\frac{7}{2}} \times 3^{2} \\
& =\left(3^{\frac{1}{2}-2}\right)^{\frac{5}{2}}\left(\frac{3^{2}}{3^{\frac{3}{2}}}\right)^{\frac{7}{2}} \times 3^{2} \\
& =\left(3^{\frac{-3}{2}}\right)^{\frac{5}{2}}\left(3^{\frac{2-3}{2}}\right)^{\frac{7}{2}} \times 3^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =3^{\frac{-15}{4}}\left(3^{\frac{1}{2}}\right)^{\frac{7}{2}} \times 3^{2} \\
& =\left(\frac{3}{3^{3 / 2}}\right)^{7 / 2} 3^{\frac{-15}{4}} \times 3^{\frac{7}{4}} \times 3^{2} \\
& =3^{\frac{-15}{4}+\frac{7}{4}+2} \\
& =3^{-2+2}=3^{0}=1
\end{aligned}
$$

[23] The value $\frac{\log _{3} 8}{\log _{9} 16 \cdot \log _{4} 10}$ is :
(a) $3 \log _{10} 2$
(b) $7 \log _{10} 3$
(c) $3 \log _{e} z$
(d) None.

Answer:
(a) $\frac{\log _{3}^{8}}{\log _{9}^{16}-\log _{4}^{10}}$

$$
=\log _{3}{ }^{8} \cdot \log _{16} 9 \cdot \log _{10} 4
$$

$$
=\log _{3}^{2^{3}} \cdot \log _{4^{2}}^{3^{2}} \cdot \log _{10}^{2^{3^{2}}}
$$

$$
=3 \log _{3}{ }^{2} \frac{2}{4} \log _{2}^{3} 2 \log _{10}{ }^{2}
$$

$$
=\frac{3 \log 2}{\log 3} \cdot \frac{1 \log 3}{2 \log 2} \cdot \frac{2 \log 2}{\log 10}
$$

$$
=\frac{3 \log 2}{\log 10}
$$

$$
=3 \log _{10}^{2}
$$

2008 - FEBRUARY

[24] In 40 litres mixture of glycerine and water, the ratio of glycerine and water is $3: 1$. The quantity of water added in the mixture in order to make this ratio $2: 1$ is:
(a) 15 litres
(b) 10 litres
(c) 8 litres
(d) 5 litres.

3.16 Solv ed Scanner CA Foundation Paper - 3A (New Syllabus)

Answer:

(d) Quantity of glycerine $=40 \times \frac{3}{4}=30$ litres

Quantity of water $=40 \times \frac{1}{4}=10$ litres
Let x liters of water be added to the mixture.
Then, total quantity of mixture $=(40+x)$ litres
total quantity of water in the mixture $=(10+x)$ litres.
So, $\frac{30}{10+x}=\frac{2}{1}$
$30=20+2 x$
$2 x=10$
$x=5$ litres
Therefore, 5 litres of water must be added to the mixture.
[25] The third proportional between $\left(a^{2}-b^{2}\right)$ and $(a+b)^{2}$ is :
(a) $\frac{a+b}{a-b}$
(b) $\frac{a-b}{a+b}$
(c) $\frac{(a-b)^{2}}{a+b}$
(d) $\frac{(a+b)^{3}}{a-b}$

Answer:

(d) Let the third proportional be x.

$$
\therefore \frac{\mathrm{a}^{2}-\mathrm{b}^{2}}{(\mathrm{a}+\mathrm{b})^{2}}=\frac{(\mathrm{a}+\mathrm{b})^{2}}{\mathrm{x}}
$$

By cross - multiplication

$$
\begin{aligned}
& x=(a+b)^{2} \frac{(a+b)^{2}}{\left(a^{2}-b^{2}\right)} \\
& x=\frac{(a+b)^{3}}{(a-b)}
\end{aligned}
$$

[26] If $2^{x}-2^{x-1}=4$ then x^{x} is equal to :
(a) 7
(b) 3
(c) 27
(d) 9

Answer:

(c) $2^{x}-2^{x-1}=4$
$2^{x}-\frac{2^{x}}{2}=4$
$2^{x}\left[1-\frac{1}{2}\right]=4$
$2^{x}\left[\frac{1}{2}\right]=4$
$2^{x}=8$
$2^{x}=2^{3}$
$\therefore \mathrm{x}=3$
$x^{x}=3^{3}$
$=27$
[27] If $x=\frac{e^{n}-e^{-n}}{e^{n}+e^{-n}}$, then the value of n is:
(a) $\frac{1}{2} \log _{e} \frac{1+x}{1-x}$
(b) $\log _{e} \frac{1+x}{1-x}$
(c) $\log _{e} \frac{1-x}{1+x}$
(d) $\log _{e} \frac{1-x}{1+x}$
(1 mark)

Answer:

(a) $x=\frac{e^{n}-e^{-n}}{e^{n}+e^{-n}}$
$\frac{1}{x}=\frac{e^{n}+e^{-n}}{e^{n}-e^{-n}}$
Applying Componendo \& Dividendo

$$
\begin{aligned}
& \frac{1+x}{1-x}=\frac{e^{n}+e^{-n}+e^{n}-e^{-n}}{e^{n}+e^{-n}-e^{n}+e^{-n}} \\
& \frac{1+x}{1-x}=\frac{2 \cdot e^{n}}{2 e^{-n}}
\end{aligned}
$$

3.18 Solv ed Scanner CA Foundation Paper - 3A (New Syllabus)

$$
\begin{aligned}
& \frac{1+x}{1-x}=e^{2 n} \frac{1+x}{1-x}=2 n \\
& \log \left(\frac{1+x}{1-x}\right)=2 n, n=\frac{1}{2} \operatorname{Loge}\left(\frac{1+x}{1-x}\right)
\end{aligned}
$$

[28] $\log 144$ is equal to :
(a) $2 \log 4+2 \log 2$
(b) $4 \log 2+2 \log 3$
(c) $3 \log 2+4 \log 3$
(d) $3 \log 2-4 \log 3$

Answer:
(b) Log 144
$=\log (16 \times 9)=\log 16+\log 9$
$=\log 2^{4}+\log 3^{2}$
$=4 \log 2+2 \log 3$.

2008 - June

[29] In what ratio should tea worth ₹ 10 per kg be mixed with tea worth ₹ 14 per kg , so that the average price of the mixture may be ₹ 11 per kg ?
(a) $2: 1$
(b) $3: 1$
(c) $3: 2$
(d) $4: 3$

Answer:

(b) Let x quantity of tea worth ₹10per kg. be mixed with y quantity worth 14 per kg.
\therefore Total price of the mixture $=10 x+14 y$.
and
Total quantity of the mixture $=x+y$
\therefore Average price of mixture will be $\frac{10 x+14 y}{x+y}=11$
$\therefore 10 \mathrm{x}+14 \mathrm{y}=11 \mathrm{x}+11 \mathrm{y}$
$3 y=x$
$\therefore \quad \frac{x}{y}=\frac{3}{1}$
or $x: y=3: 1$ which is the required ratio.

[Chapter $\ln =1]$ Ratio and Proportion, Indices...

3.19
[30] The ages of two persons are in the ratio 5:7. Eighteen years ago their ages were in the ratio of 8:13, their present ages (in years) are:
(a) 50, 70
(b) 70, 50
(c) 40,56
(d) None.

Answer:
(a) Let the present ages of persons be $5 x \& 7 x$.

Eighteen years ago, their ages $=5 x-18$ and $7 x-18$.
According to given:
$\frac{5 x-18}{7 x-18}=\frac{8}{13}$
$65 x-234=56 x-144$
$9 x=90$
$x=10$
Their present ages are $5 x=5 \times 10=50$ years
$7 x=7 \times 10=70$ years.
[31] If $x=y^{a}, y=z^{b}$ and $z=x^{c}$ then $a b c$ is:
(a) 2
(b) 1
(c) 3
(d) 4

Answer:
(b) $Z=x^{c}$
$Z=\left(y^{a}\right)^{c}\left(\because y^{a}=x\right)$
$Z=y^{\text {ac }}$
$Z=\left(z^{b}\right)^{a c}\left(\because z^{b}=y\right)$
$Z=Z^{a b c}$
$a b c=1\left(\because x^{m}=x^{n}\right.$ then $\left.m=n\right)$
[32] If $\log _{2}\left[\log _{3}\left(\log _{2} x\right)\right]=1$, then x equals :
(a) 128
(b) 256
(c) 512
(d) None.

Answer:

(c) $\log _{2}\left[\log _{3}\left(\log _{2} x\right)\right]=1$
$=\log _{3}\left(\log _{2} x\right)=2^{1}$ (Converting into exponential form)
$=\log _{2} x=3^{2}$ (Converting into exponential form)
$=\log _{2} x=9$
$=x=2^{9}$ (Converting into exponential form)
$x=512$.

2008 - December

[33] If $\log \left(\frac{a+b}{4}\right)=\frac{1}{2}(\log a+\log b)$ then: $\frac{a}{b}+\frac{b}{a}$
(a) 12
(b) 14
(c) 16
(d) 8
(1 mark)

Answer:

(b) $\log \left(\frac{a+b}{4}\right)=\frac{1}{2}(\log a+\log b)$
$\log \left(\frac{a+b}{4}\right)=\log (a b)^{1 / 2}$
[Since, $\log _{a} m n=\log _{a} m+\log _{a} n$ and $n \log _{a} m=\log _{a} m^{n}$]
Take antilog on both sides.

$$
\begin{aligned}
& \frac{a+b}{4}=\sqrt{a b} \\
& a+b=4 \sqrt{a b} \\
& \text { Squaring both sides } \\
& (a+b)^{2}=(4 \sqrt{a b})^{2} \\
& a^{2}+b^{2}+2 a b=16 a b \\
& a^{2}+b^{2}=14 a b \\
& \frac{a}{b}+\frac{b}{a}=14, \text { which is the required answer }
\end{aligned}
$$

[34] If A, B and C started a business by investing ₹ $1,26,000$, ₹ 84,000 and $₹ 2,10,000$. If at the end of the year profit is ₹ $2,42,000$ then the share of each is :
(a) 72,600, 48,400, 1,21,000
(b) $48,400,1,21,000,72,600$
(c) $72,000,49,000,1,21,000$
(d) $48,000,1,21,400,72,600$
(1 mark)

Answer:

(a) Given: Capital invested by:

A : ₹ 126,000 , B : ₹ 84,000 , C: ₹ $2,10,000$
\therefore The ratio of their investments is :
$126: 84: 210=3: 2: 5$
[Chapter 11 1] Ratio and Proportion, Indices...
3.21

Profit (at year end) $=$ ₹ $2,42,000$ gives
\therefore A's Share $=\frac{3}{10} \times 2,42,000=₹ 72,600$
B's Share $=\frac{2}{10} \times 2,42,000=₹ 48,400$
C's Share $=\frac{5}{10} \times 2,42,000=₹ 1,21,000$

2009 - June
[35] If $\frac{p}{q}=-\frac{2}{3}$ then the value of $\frac{2 p+q}{2 p-q}$ is :
(a) 1
(b) $-1 / 7$
(c) $1 / 7$
(d) 7
(1 mark)
Answer:
(c) $\frac{p}{q}=\frac{-2}{3}$

So, $P=\frac{-2 q}{3}$
Now, $\frac{2 p+q}{2 q-p}$
Substituting the value of p from (i)

$$
=\frac{2\left(\frac{-2 q}{3}\right)+q}{2\left(\frac{-2 q}{3}\right)-q}
$$

$$
=\frac{\frac{-4 q}{3}+q}{\frac{-4 q}{3}-q}
$$

3.22 Solv ed Scanner CA Foundation Paper - 3A (New Syllabus)

$$
\begin{aligned}
& =\frac{\frac{-4 q+3 q}{3}}{\frac{-4 q-3 q}{3}} \\
& =\frac{-q}{3} \times \frac{3}{-7 q} \\
& =\frac{1}{7}
\end{aligned}
$$

[36] Fourth proportional to $x, 2 x,(x+1)$ is:
(a) $(x+2)$
(b) $(x-2)$
(c) $(2 x+2)$
(d) $(2 x-2)$

Answer:
(c) Let the fourth proportional to $x, 2 x,(x+1)$ be t, then,
$\frac{x}{2 x}=\frac{x+1}{t}$
$\frac{1}{2}=\frac{x+1}{t}$
$t=2 x+2$
\therefore Fourth proportional to $x, 2 x,(x+1)$ is $(2 x+2)$
i.e. $x: 2 x::(x+1):(2 x+2)$
[37] If $x=3^{1 / 3}+3^{-1 / 3}$ then find value of $3 x^{3}-9 x$
(a) 3
(b) 9
(c) 12
(d) 10

Answer:
(d) $x=3^{1 / 3}+3^{-1 / 3}$

On cubing both sides, we get

$$
\begin{align*}
& x^{3}=\left(3^{1 / 3}+3^{-1 / 3}\right)^{3} \tag{1}\\
& x^{3} 3+3^{-1}+3 \times 3^{1 / 3} \times \frac{1}{3^{1 / 3}}\left(3^{1 / 3}+3^{-1 / 3}\right) \\
& x^{3}=3+\frac{1}{3}+3\left(3^{1 / 3}+3^{-1 / 3}\right)
\end{align*}
$$

$$
\begin{aligned}
& x^{3}=3+\frac{1}{3}+3 x \quad[U \operatorname{sing}(1)] \\
& x^{3}-3 x=\frac{9+1}{3} \\
& 3\left(x^{3}-3 x\right)=10 \\
& \therefore 3 x^{3}-9 x=10
\end{aligned}
$$

[38] Find the value of : [1- $\left.\left\{1-\left(1-x^{2}\right)^{-1}\right\}^{-1}\right]^{-1 / 2}$
(a) $1 / x$
(b) x
(c) 1
(d) None of these.

Answer:
(b) $\left[1-\left\{1-\left(1-x^{2}\right)^{-1}\right\}^{-1}\right]^{-1 / 2}$

$$
\begin{aligned}
& =\left[1-\left\{1-\frac{1}{1-x^{2}}\right\}^{-1}\right]^{-1 / 2} \\
& =\left[1-\left\{\frac{1-x^{2}-1}{1-x^{2}}\right\}^{-1}\right]^{-1 / 2}
\end{aligned}
$$

$$
=\left[1-\left\{\frac{-x^{2}}{1-x^{2}}\right\}^{-1}\right]^{-1 / 2}
$$

$$
=\left[1-\left\{\frac{1-x^{2}}{x^{2}}\right\}^{-1}\right]^{-1 / 2}
$$

$$
=\left[1+\frac{1-x^{2}}{x^{2}}\right]^{-1 / 2}=\left[\frac{x^{2}+1-x^{2}}{x^{2}}\right]^{-1 / 2}
$$

$$
=\left[\frac{1}{x^{2}}\right]^{-1 / 2}=\left(x^{2}\right)^{1 / 2}
$$

$$
=x
$$

[39] $\log (m+n)=\log m+\log n, m$ can be expressed as:
(a) $m=\frac{n}{n-1}$
(b) $m=\frac{n}{n+1}$
(c) $m=\frac{n+1}{n}$
(d) $m=\frac{n+1}{n-1}$

3.24

Answer:

(a) $\log (m+n)=\log m+\log n$
$\log (m+n)=\log (m n) \quad[\because \log (a b)=\log a+\log b]$
Taking Antilog on both side
Antilog $[\log (m+n)]=$ Antilog $[\log m n]$

$$
\begin{aligned}
\therefore \quad & m+n=m n \\
& m n-m=n \\
& m(n-1)=n \\
& m=\frac{n}{n-1}
\end{aligned}
$$

[40] $\log _{4}\left(x^{2}+x\right)-\log _{4}(x+1)=2$.
Find x
(a) 16
(b) 0
(c) -1
(d) None of these.

Answer:
(a) $\log _{4}\left(x^{2}+x\right)-\log _{4}(x+1)=2$
$\log _{4}\left(\frac{x^{2}+x}{x+1}\right)=2\left[\therefore \log _{a} m-\log _{a} n=\log _{a}\left(\frac{m}{n}\right)\right]$
$4^{2}=\frac{x^{2}+x}{x+1}$
$16=\frac{x^{2}+x}{x+1}$
$16 x+16=x^{2}+x$
$x^{2}-15 x-16=0$
$x^{2}-16 x+x-16=0$
$x(x-16)+1(x-16)=0$
$(x+1)(x-16)=0$
$x=-1$ or $x=16$
Since $x=-1$ is not possible therefore $x=16$

2009 - December

[41] $\frac{2^{n}+2^{n-1}}{2^{n+1}-2^{n}}$
(a) $1 / 2$
(b) -3
(c) $2 / 3$
(d) $1 / 3$

Answer:
(b) $2 \mathrm{n}+2 \mathrm{n}-1 / 2 \mathrm{n}-1-2 \mathrm{n}$
$2 n+2 n^{*} 2-1 / 2 n * 2-1-2 n$
$2 n(1+2-1) / 2 n(2-1-1)$
$1+1 / 2 / 1 / 2 / 1=3 / 2 /-1 / 2$
$=-3$
[42] If $2^{x} \times 3^{y} \times 5^{z}=360$ Then what is the value of x, y, z,?
(a) $3,2,1$
(b) 1, 2, 3
(c) $2,3,1$
(d) 1, 3, 2
(1 mark)

Answer:

(a) $2^{x} \times 3^{y} \times 5^{z}=360$. \qquad
The factors of 360 are:
$2^{3} \times 3^{2} \times 5$.
$\therefore 2^{3} \times 3^{2} \times 5^{1}=360$
On comparing (1) and (2), we get;
$x=3, y=2$ and $z=1$
[43] Find the value of $\left[\log _{10} \sqrt{25}-\log _{10}(2)^{3}+\log _{10}(4)^{2}\right]^{x}$
(a) x
(b) 10
(c) 1
(d) None.

Answer:

(c) $\left[\log _{10} \sqrt{25}-\log _{10}\left(2^{3}\right)+\log _{10}\left(4^{2}\right)\right]^{x}$

$$
=\left[\log _{10} 5-3 \log _{10} 2+\log _{10}\left(2^{4}\right)\right]^{x}
$$

$$
=\left[\log _{10} 5-3 \log _{10} 2+4 \log _{10}{ }^{2}\right]^{x}
$$

$$
=\left[\log _{10} 5+\log _{10}^{2}\right]^{x}
$$

$$
=\left[\log _{10}(5 \times 2)\right]^{\mathrm{x}}[\because \log (m n)=\log m+\log n]
$$

$$
=\left[\log _{10} 10\right]^{x}
$$

$$
=1^{x}\left[\therefore \log _{\mathrm{a}} \mathrm{a}=1\right]
$$

$$
=1
$$

2010-JUNE
[44] If $\log _{a} b+\log _{a} c=0$ then
(a) $b=c$
(b) $\mathrm{b}=-\mathrm{c}$
(c) $\mathrm{b}=\mathrm{c}=1$
(d) b and c are reciprocals. (1 mark)

Answer:
(d) $\log _{2} b+\log _{a} c=0$

$$
\log _{a} b c=0
$$

$a^{0}=b c$
$b c=1$
$\therefore \mathrm{b}=\frac{1}{\mathrm{c}}$
So, b and c are reciprocals.
[45] What must be added to each term of the ratio $49: 68$, so that it becomes 3:4?
(a) 3
(b) 5
(c) 8
(d) 9
(1 mark)

Answer:

(c) Let the number added be x

$$
\begin{aligned}
& \frac{49+x}{68+x}=\frac{3}{4} \\
& 196+4 x=204+3 x \\
& x=8
\end{aligned}
$$

[Chapter $\|=1$ 1] Ratio and Proportion, Indices...

[46] The students of two classes are in the ratio $5: 7$, if 10 students left from each class, the remaining students are in the ratio of $4: 6$ then the number of students in each class is:
(a) 30, 40
(b) 25, 24
(c) 40,60
(d) 50,70

Answer:

(d) Let the ratio be $5 \mathrm{x}: 7 \mathrm{x}$

If 10 student left, Ratio became 4:6
$\frac{5 x-10}{7 x-10}=\frac{4}{6}$
$30 x-60=28 x-40$
$2 x=20$
$\mathrm{x}=10$
$\therefore \quad$ No. of students in each class is $5 x$ and $7 x$
i.e. 50,70

2010 - December

[47] The value of
$2 \log x+2 \log x^{2}+2 \log x^{3}+------+$
$2 \log x^{n}$ will be :
(a) $\frac{n(n+1) \log x}{2}$
(b) $n(n+1) \log x$
(c) $\mathrm{n}^{2} \log \mathrm{x}$
(d) None of these.

Answer:

(b) $2 \log x+2 \log x^{2}+2 \log x^{3}+$ \qquad
$2\left[\log x+\log x^{2}+\log x^{3}+\right.$ \qquad
$2[\log x+2 \log x+3 \log x+$ \qquad
$2 \log x[1+2+3$ $\mathrm{n}]$
$2 \log x \times \frac{n(n+1)}{2}$
$=n(n+1) \log x$

3.28
 Solv ed Scanner CA Foundation Paper - 3A (New Syllabus)

[48] The recurring decimal 2.7777........ can be expressed as:
(a) $24 / 9$
(b) $22 / 9$
(c) $26 / 9$
(d) $25 / 9$

Answer:
(d) 2.7777

$$
\begin{aligned}
& 2+0.7+0.07+0.007+\ldots \ldots \ldots . \\
& 2+\left(\frac{7}{10}+\frac{7}{100}+\frac{7}{1000}+\ldots \ldots . .\right) \\
& 2+7\left(\frac{1}{10}+\frac{1}{100}+\frac{1}{1000}+\ldots \ldots \ldots\right) \\
& 2+7\left(\frac{1 / 10}{1-1 / 10}\right) \\
& =2+7 \times \frac{1}{9} \\
& =2+\frac{7}{9} \\
& =\frac{18+7}{9} \\
& =\frac{25}{9}
\end{aligned}
$$

[49] Solve : $\left(\frac{\log x_{10}-3}{2}\right)+\left(\frac{11-\log x_{10}}{3}\right)=2$
(a) 10^{-1}
(b) 10^{2}
(c) 10
(d) 10^{3}

Answer:

(a) $\left(\frac{\log _{10} x-3}{2}\right)+\left(\frac{11-\log _{10} x}{3}\right)=2$
$3 \log _{10} x-9+22-2 \log _{10} x=12$
$\log _{10} x+13=12$
$\log _{10} x=-1$
$x=10^{-1}$
[50] If $A: B=2: 5$, then $(10 A+3 B):(5 A+2 B)$ is equal to:
(a) $7: 4$
(b) $7: 3$
(c) $6: 5$
(d) $7: 9$
(1 mark)

Answer:

(a) $\frac{A}{B}=\frac{2}{5}=\frac{2 k}{5 k}$

$$
\frac{10 A+3 B}{5 A+2 B}=\frac{20 k+15 k}{10 k+10 k}=\frac{35 k}{20 k}
$$

$$
=\frac{35}{20}
$$

$$
=\frac{7}{4}
$$

2011 - June

[51] If $n=m$! where (' m ' is a positive integer >2) then the value of :
$\frac{1}{\log _{2}{ }^{n}}+\frac{1}{\log _{3}{ }^{n}}+\frac{1}{\log _{4}{ }^{n}}+\ldots \ldots . . .+\frac{1}{\log _{m}{ }^{n}}$
(a) 1
(b) 0
(c) -1
(d) 2
(1 mark)

Answer:

(a) Given : $\mathrm{n}=\mathrm{M}$! for $\mathrm{M} \geq 2$

$$
\begin{aligned}
& \frac{1}{\log _{2}{ }^{n}}+\frac{1}{\log _{3}{ }^{n}}+\frac{1}{\log _{4}{ }^{n}}+\ldots \ldots \ldots \ldots+\frac{1}{\log _{m}{ }^{n}} \\
& \text { or, }=\log _{n}{ }^{2}+\log _{n}{ }^{3}+\log _{n}{ }^{4}+\ldots \ldots \ldots \ldots+\ldots+\log _{n}{ }^{m} \quad\left(\therefore \log _{b}{ }^{a}=\frac{1}{\log _{a}{ }^{b}}\right) \\
& =\log _{n}(2 \times 3 \times 4 \times \ldots \ldots \times m) \quad\left(\therefore \log ^{(m n)}=\log ^{m}+\log ^{n}\right) \\
& =\log _{n}(m!) \\
& =\log _{n}{ }^{n} \\
& =1
\end{aligned}
$$

3.30

[52] In a film shooting, A and B received money in a certain ratio and B and C also received the money in the same ratio. If A gets ₹ 1,60,000 and C gets ₹ $2,50,000$. Find the amount received by B ?
(a) ₹ $2,00,000$
(b) ₹ $2,50,000$
(c) ₹ 1,00,000
(d) ₹ $1,50,000$

Answer:

(a) Given: $\mathrm{A}: \mathrm{B}=\mathrm{B}: \mathrm{C}$
$\Rightarrow B^{2}=A \times C$
or $B=\sqrt{A \times C}$
\& $A=1,60,000 ; C=2,50,000$
$\therefore \quad B=\sqrt{1,60,000 \times 2,50,000}$
$B=2,00,000$

2011 - December
[53] The ratio Compounded of $4: 5$ and sub-duplicate of "a":9 is $8: 15$. Then Value of " a " is:
(a) 2
(b) 3
(c) 4
(d) 5

Answer:

(c) Sub duplicate ratio of $\mathrm{a}: 9=\sqrt{\mathrm{a}}: \sqrt{9}$, Compound Ratio (C.R.) $=8: 15$
Compound Ratio of $4: 5$ and sub duplicate ratio of a:9 is given by C. $R=\frac{4}{5} \times \frac{\sqrt{a}}{\sqrt{9}}$

$$
\frac{8}{15}=\frac{4}{5} \times \frac{\sqrt{a}}{\sqrt{9}}
$$

$$
\sqrt{\mathrm{a}}=\frac{8 \times 5 \times \sqrt{9}}{15 \times 4}
$$

$$
\begin{aligned}
& \sqrt{\mathrm{a}}=\frac{8 \times 5 \times 3}{15 \times 4} \\
& \sqrt{\mathrm{a}}=2
\end{aligned}
$$

$$
\text { On squaring }(\sqrt{\mathrm{a}})^{2}=2^{2}
$$

$$
a=4
$$

[54] If $\log _{2} x+\log _{4} x=6$, then the Value of x is :
(a) 16
(b) 32
(c) 64
(d) 128

Answer:
(a) If $\log _{2} x+\log _{4} x=6$

$$
\begin{aligned}
& \frac{\log x}{\log 2}+\frac{\log x}{\log 4}=6 \\
& \frac{\log x}{\log 2}+\frac{\log x}{\log 2^{2}}=6
\end{aligned}
$$

$$
\frac{\log x}{\log 2}+\frac{\log x}{2 \log 2}=6
$$

$$
\frac{\log x}{\log 2}\left[1+\frac{1}{2}\right]=6
$$

$$
\frac{\log x}{\log 2} \times \frac{3}{2}=6
$$

$$
\frac{\log x}{\log 2}=6 \times \frac{2}{3}
$$

$$
\frac{\log x}{\log 2}=4
$$

$$
\log x=4 \log 2
$$

$$
\log x=\log 2^{4}
$$

$$
x=2^{4}
$$

$$
x=16
$$

[55] If X Varies inversely as square of Y and given that $Y=2$ for $X=1$, then the Value of X for $Y=6$ will be:
(a) 3
(b) 9
(c) $1 / 3$
(d) $1 / 9$

3.32

Answer:

(d) Given x varies inversely as square of y
i. e. $x \propto \frac{1}{y^{2}}$
$x=k \frac{1}{y^{2}}$
$x=\frac{\mathrm{k}}{\mathrm{y}^{2}}$.
Given $x=1, y=2$ then
$1=\frac{k}{(2)^{2}} \quad k=1 \times 4=4$
Now putting $y=6_{1} k=4$ in equation (1)

$$
\begin{aligned}
& x=\frac{4}{6^{2}} \\
& x=\frac{4}{36}=\frac{1}{9}
\end{aligned}
$$

[56] The value of $\frac{\left(3^{n+1}+3^{n}\right)}{\left(3^{n+3}-3^{n+1}\right)}$ is equal to:
(a) $1 / 5$
(b) $1 / 6$
(c) $1 / 4$
(d) $1 / 9$

Answer:
(b) $\frac{3^{n+1}+3^{n}}{3^{n+3}-3^{n+1}}=\frac{3^{n} \cdot 3^{1}+3^{n}}{3^{n} \cdot 3^{3}-3^{n} \cdot 3^{1}}$
$=\frac{3^{n}\left(3^{1}+1\right)}{3^{n}\left(3^{3}-3\right)}$
$=\frac{(3+1)}{(27-3)}$
$=\frac{4}{24}$
$=\frac{1}{6}$

[Chapter $11 / 1$ 1] Ratio and Proportion, Indices...

3.33
[57] If $\log x y=100$ and $\log _{2} x=10$, then the value of ' y ' is :
(a) 2^{10}
(b) 2^{100}
(c) $2^{1,000}$
(d) $2^{10,000}$
(1 mark)

Answer:

(c) Given $\log _{x} y=100$ \qquad
$\log _{2} x=10$.
Multiply eq (1) \& (2)

$$
\begin{equation*}
\log _{x} y \cdot \log _{2} x=100 \times 10 \tag{2}
\end{equation*}
$$

$$
\frac{\log y}{\log x} \times \frac{\log x}{\log 2}=1,000
$$

$\log y=1,000 \log 2$
$\log y=\log 2^{1,000}$
$\Rightarrow y=2^{1,000}$
[58] Which of the numbers are not in proportion ?
(a) $6,8,5,7$
(b) 7, 3, 14, 6
(c) $18,27,12,18$
(d) $8,6,12,9$

Answer:

(a) If say a, b, c, d are in proportion they bear a common ratio that is $\Rightarrow \frac{a}{b}=\frac{c}{d}$
Option (A) $\frac{6}{8} \neq \frac{5}{7}$
Option (B) $\frac{7}{3}=\frac{14}{6}$
Option (C) $\frac{18}{27}=\frac{12}{18}$
Option (D) $\frac{8}{6}=\frac{12}{9}$

2012 - December

[59] Find the value of x, if $x(x)^{1 / 3}=\left(x^{1 / 3}\right)^{x}$
(a) 3
(b) 4
(c) 2
(d) 6

Answer:
(b) If $x^{1}(x)^{1 / 3}=\left(x^{1 / 3}\right)^{x}$

$$
\begin{aligned}
& x^{1+1 / 3}=x^{\frac{1}{3} \times} \\
& \Rightarrow x^{4 / 3}=x^{\frac{1}{3} \times}
\end{aligned}
$$

on comparing

$3 x=12 \Rightarrow x=4$
[60] Which of the following is true.
If $\frac{1}{a b}+\frac{1}{b c}+\frac{1}{c a}=\frac{1}{a b c}$
(a) $\log (a b+b c+c a)=a b c$
(b) $\log \left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=a b c$
(c) $\log (a b c)=0$
(d) $\log (a+b+c)=0$

Answer:
(d) Given

$$
\begin{gathered}
\frac{1}{a b}+\frac{1}{b c}+\frac{1}{c a}=\frac{1}{a b c} \\
\frac{c+a+b}{a b c}=\frac{1}{a b c} \\
a+b+c=1
\end{gathered}
$$

taking log on both side

$$
\log (a+b+c)=\log 1
$$

$$
\log (a+b+c)=0
$$

[Chapter $\mid 1 /$ 1] Ratio and Proportion, Indices...

3.35
[61] Find two numbers such that mean proportional between them is 18 and third proportional between them is 144
(a) 9, 36
(b) 8,32
(c) 7,28
(d) 6,24
(1 mark)

Answer:

(a) Let two Nos. be x and y

Mean proportion between x and y is 18
So, $x, 18, y$ are in proportion
x : 18 :: 18 : y
$\frac{x}{18}=\frac{18}{y}$
$x y=324$
$x=\frac{324}{y}$
If third proportion between $x \& y$ be 144
So, $x, y, 144$ are in proportion
$x: y:: y: 144$
$\frac{x}{y}=\frac{y}{144}$
$y^{2}=144 x$ \qquad
Putting the value of x in equation (2)
$y^{2}=144 \times \frac{324}{y}$
$y^{3}=144 \times 324$
$y=3 \sqrt{144 \times 324}$
$y=\sqrt[3]{3 \times 3 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3}$
$y=\sqrt[3]{6 \times 6 \times 6 \times 6 \times 6 \times 6}$
$y=6 \times 6$
$y=36$
Putting $y=36$ in equation (1)
$x=\frac{324}{36}=9$
$x=9, y=36$

3.36

2013 - June

[62] For what value of x, the equation $\left(\log _{\sqrt{x}} 2\right)^{2}=\log _{x}{ }^{2}$ is true?
(a) 16
(b) 32
(c) 8
(d) 4
(1 mark)
Answer:
(a) Given

$$
\begin{aligned}
\left(\log _{\sqrt{x}}\right)^{2} & =\log _{x} 2 \\
\left(\frac{\log 2}{\log \sqrt{x}}\right)^{2} & =\left(\frac{\log 2}{\log x}\right) \\
\left(\frac{\log 2}{\log x^{1 / 2}}\right)^{2} & =\frac{\log 2}{\log x} \\
\left(\frac{\log 2}{\frac{1}{2} \log x}\right)^{2} & =\frac{\log 2}{\log x} \\
\left(\frac{2 \log 2}{\log x}\right)^{2} & =\left(\frac{\log 2}{\log x}\right) \\
4\left(\frac{\log 2}{\log x}\right)^{2} & =\left(\frac{\log 2}{\log x}\right)^{1} \\
4 \frac{\log 2}{\log x} & =1 \\
4 \log 2 & =\log x \\
\log 2^{4} & =\log x \\
\Rightarrow 2^{4} & =x \Rightarrow x=16
\end{aligned}
$$

[63] The mean proportional between 24 and 54 is :
(a) 33
(b) 34
(c) 35
(d) 36

Answer:

(d) Mean Proportion $=\sqrt{24 \times 54}$

$$
\begin{aligned}
& =\sqrt{1296} \\
& =36
\end{aligned}
$$

[Chapter $\operatorname{\| n}$ 1] Ratio and Proportion, Indices...

3.37
[64] The triplicate ratio of $4: 5$ is:
(a) $125: 64$
(b) $16: 25$
(c) $64: 125$
(d) $120: 46$
(1 mark)
Answer:
(c) The triplicate Ratio of $4: 5=4^{3}: 5^{3}$

$$
=64: 125
$$

2013 - December

[65] If $\sqrt[3]{a}+3 \sqrt{b}+3 \sqrt{c}$ then the value of $\left(\frac{a+b+c}{3}\right)^{3}$
(a) abc
(b) $9 a b c$
(c) $\frac{1}{\mathrm{abc}}$
(d) $\frac{1}{9 a b c}$

Answer:

(a) If $3 \sqrt{a}+3 \sqrt{b}+3 \sqrt{c}=0$

$$
a^{1 / 3}+b^{1 / 3}+c^{1 / 3}=0
$$

$$
\begin{equation*}
a^{1 / 3}+b^{1 / 3}=-c^{1 / 3} \tag{i}
\end{equation*}
$$

Cube on both side

$$
\begin{aligned}
& \left(a^{1 / 3}+b^{1 / 3}\right)^{3}=\left(-c^{1 / 3}\right)^{3} \\
& \left(a^{1 / 3}\right)^{3}+\left(b^{1 / 3}\right)^{3}+3 \cdot a^{1 / 3} \cdot b^{1 / 3}\left(a^{1 / 3}+b^{1 / 3}\right)=-c \\
& a+b+3 a^{1 / 3} \cdot b^{1 / 3} \cdot\left(-c^{1 / 3}\right)=-c \\
& a+b-3 a^{1 / 3} \cdot b^{1 / 3} \cdot c^{1 / 3}=-c \\
& a+b+c=3 a^{1 / 3} \cdot b^{1 / 3} \cdot c^{1 / 3} \\
& \left(\frac{a+b+c}{3}\right)=\frac{3 a^{1 / 3} \cdot b^{1 / 3} \cdot c^{1 / 3}}{3} \\
& \left(\frac{a+b+c}{3}\right)^{3}=\left(a^{1 / 3} \cdot b^{1 / 3} \cdot c^{1 / 3}\right)^{3}=a b c
\end{aligned}
$$

[66] Find three numbers in the ratio $1: 2: 3$, so that the sum of their squares is equal to 504
(a) $6,12,18$
(b) $3,6,9$
(c) $4,8,12$
(d) $5,10,15$

3.38

Answer:

(a) Since Ratio of three Number is 1:2:3

$$
\text { First No. } \quad=x
$$

Second No. $=2 x$
Third No. $=3 x$
Sum of squares of numbers $=504$

$$
\begin{aligned}
(x)^{2}+(2 x)^{2}+(3 x)^{2} & =504 \\
x^{2}+4 x^{2}+9 x^{2} & =504 \\
14 x^{2} & =504 \\
x^{2} & =\frac{504}{14} \\
x^{2} & =36 \\
x & =6
\end{aligned}
$$

First No. $=x=6$
Second No. $=2 x=2 \times 6=12$
Third No. $=3 x=3 \times 6=18$
[67] The value of $\log _{4} 9 . \log _{3} 2$ is:
(a) 3
(b) 9
(c) 2
(d) 1

Answer:
(d) $\log _{4} 9 . \log _{3} 2$

$$
\begin{aligned}
& =\frac{\log 9}{\log 4} \cdot \frac{\log 2}{\log 3} \\
& =\frac{\log 3^{2}}{\log 2^{2}} \cdot \frac{\log 2}{\log 3} \\
& =\frac{2 \log 3}{2 \log 2} \cdot \frac{\log 2}{\log 3} \\
& =1
\end{aligned}
$$

[68] The value of $\left(\log _{y} x \cdot \log _{z} y . \log _{x} z\right)^{3}$ is
(a) 0
(b) -1
(c) 1
(d) 3

Answer:

(c) $\left(\log _{y} x \cdot \log _{z} y \cdot \log _{x} z\right)^{3}$

$$
\begin{aligned}
& =\left(\frac{\log x}{\log y} \cdot \frac{\log y}{\log z} \cdot \frac{\log z}{\log x}\right)^{3} \\
& =(1)^{3} \\
& =1
\end{aligned}
$$

[69] Divide 80 into two parts so that their product is maximum, then the numbers are:
(a) 25,55
(b) 35, 45
(c) 40,40
(d) 15, 65

Answer:

(c) The sum of two No. $=80$
First No. = x

Second No. $=(80-x)$
Product two No =x. $(80-x)$

$$
\begin{equation*}
P=80 x-x^{2} \tag{1}
\end{equation*}
$$

w.r.f. (x)

$$
\begin{align*}
& \frac{d p}{d x}=80-2 x \tag{2}\\
& \frac{d^{2} p}{d x^{2}}=-2 \tag{3}
\end{align*}
$$

For max/minima

$$
\begin{aligned}
& \frac{d p}{d x}=0 \\
& 80-2 x=0 \\
& 2 x=80 \\
& x=40
\end{aligned}
$$

$x=40$ in equation (iii)
$\frac{d^{2} p}{d x^{2}}=-2$ (Negative)
function is maximum at $x=40$
Numbers are 40, (80-40)

$$
=40,40
$$

3.40

2014 - June

[70] If $x: y=2: 3$, then $(5 x+2 y):(3 x-y)=$
(a) $19: 3$
(b) $16: 3$
(c) $7: 2$
(d) $7: 3$
(1 mark)

Answer:

(b) Given,
$x: y=2: 3$
Let $x=2 k, y=3 k$
$(5 x+2 y):(3 x-y)$
$=\frac{(5 \mathrm{x}+2 \mathrm{y})}{(3 \mathrm{x}-\mathrm{y})}$
$=\frac{5 \times 2 \mathrm{k}+2 \times 3 \mathrm{k}}{3 \times 2 \mathrm{k}-3 \mathrm{k}}$
$=\frac{10 \mathrm{k}+6 \mathrm{k}}{6 \mathrm{k}-3 \mathrm{k}}$
$=\frac{16 \mathrm{k}}{3 \mathrm{k}}$
$=16: 3$
[71] If $(25)^{150}=(25 x)^{50}$; then the value of x will be:
(a) 5^{3}
(b) 5^{4}
(c) 5^{2}
(d) 5

Answer:

(b) If $(25)^{150}=(25 x)^{50}$

$$
\begin{aligned}
& \Rightarrow \frac{25^{150}}{25^{150}}=25^{50} \cdot x^{50} \\
& \Rightarrow 25^{50}=x^{50} \\
& \Rightarrow 25^{100} \\
& \Rightarrow\left(5^{2}\right)^{100}=x^{50} \\
& \Rightarrow 5^{200} \\
& \Rightarrow\left(5^{4}\right)^{50}=x^{50} \\
& \Rightarrow 5^{4}=x \\
& \Rightarrow x=5^{4}
\end{aligned}
$$

[72] The value of $\left(\frac{y^{a}}{y^{b}}\right)^{a^{2}+a b+b^{2}} \times\left(\frac{y^{b}}{y^{c}}\right)^{b^{2}+b c+c^{2}} \times\left(\frac{y^{c}}{y^{a}}\right)^{c^{2}+a c+a^{2}}$ is equal to ___.
(a) y
(b) -1
(c) 1
(d) None of these
(1 mark)

Answer:

(c) $\left(\frac{y^{a}}{y^{b}}\right)^{a^{2}+a b+b^{2}}\left(\frac{y^{b}}{y^{c}}\right)^{b^{2}+b c+c^{2}} \cdot\left(\frac{y^{c}}{y^{a}}\right)^{c^{2}+a c+a^{2}}$

$$
\begin{aligned}
& =\left(y^{a-b} a^{2}+a b+b^{2} \cdot\left(y^{b-c} b^{b^{2}+b c+c^{2}} \cdot\left(y^{c-a}\right)^{c^{2}+a c+a^{2}}\right.\right. \\
& =y^{a^{3}-b^{3}} \cdot y^{b^{3}-c^{3}} \cdot y^{c^{3}-a^{3}} \\
& =y^{a^{3}-b^{3}+b^{3}-c^{3}+c^{3}-a^{3}} \\
& =y^{0}=1
\end{aligned}
$$

[73] If the salary of P is 25% lower than that of Q and the salary of R is 20% higher than that of Q, the ratio of the salary of R and P will be:
(a) $5: 8$
(b) $8: 5$
(c) $5: 3$
(d) $3: 5$

Answer:
(b) Let Salary of $Q=100$

Salary of $P=100-25 \%$ of 100

$$
=100-25
$$

$$
=75
$$

Salary of R $=100+20 \%$ of 100

$$
=100+20
$$

$$
=120
$$

Ratio of salary of R and $P=120: 75=8: 5$
[74] If $x^{2}+y^{2}=7 x y$, then $\log \frac{1}{3}(x+y)=$ \qquad
(a) $(\log x+\log y)$
(b) $\frac{1}{2}(\log x+\log y)$
(c) $\frac{1}{3}(\log x / \log y)$
(d) $\frac{1}{3}(\log x+\log y)$

3.42

Answer:

(b) If $x^{2}+y^{2}=7 x y$
$x^{2}+y^{2}+2 x y=7 x y+2 x y$
$(x+y)^{2}=9 x y$
taking log on both side
$\log (x+y)^{2}=\log 9 x y$
$2 \log (x+y)=\log 9+\log x+\log y$
$2 \log (x+y)=\log 3^{2}+\log x+\log y$
$2 \log (x+y)=2 \log 3+\log x+\log y$
$2 \log (x+y)-2 \log 3=\log x+\log y$
$2\left[\log \frac{(x+y)}{3}\right]\left[\log \frac{(x+y)}{3}\right]$
$=\log x+\log y$
$\log \frac{(x+y)}{3}=\frac{1}{2}[\log x+\log y]$
[75] A person has assets worth ₹ $1,48,200$. He wish to divide it amongst his wife, son and daughter in the ratio $3: 2: 1$ respectively. From this assets, the share of his son will be:
(a) ₹ 24,700
(b) ₹ 49,400
(c) ₹ 74,100
(d) ₹ 37,050
(1 mark)

Answer:

(b) A person has Assets worth = ₹ $1,48,200$

Ratio of share of wife, son \& daughter

$$
\begin{aligned}
& =3: 2: 1 \\
\text { Sum of Ratio } & =3+2+1=6 \\
\text { Share of Son } & =\frac{2}{6} \times 1,48,200 \\
& =49,400
\end{aligned}
$$

[76] If $x=\log _{24} 12, y=\log _{36} 24$ and $z=\log _{48} 36$, then $x y z+1=$ \qquad
(a) $2 x y$
(b) $2 x z$
(c) $2 y z$
(d) 2

Answer:
(c) If $x=\log _{24} 12, y=\log _{36} 24$ and $z=\log _{48} 36$ then

$$
X Y Z+1
$$

$$
\begin{aligned}
& =\log _{24} 12 \times \log _{36} 24 \times \log _{48} 36+1 \\
& =\frac{\log 12}{\log 24} \cdot \frac{\log 24}{\log 36} \cdot \frac{\log 36}{\log 48}+1 \\
& =\frac{\log 12}{\log 48}+1 \\
& =\frac{\log 12+\log 48}{\log 48} \\
& =\frac{\log (12 \times 48)}{\log 48} \\
& =\frac{\log (576)}{\log 48} \\
& =\frac{\log 24^{2}}{\log 48} \\
& =\frac{2 \log 24}{\log 48} \\
& =2 \cdot \frac{\log 24}{\log 36} \cdot \frac{\log 36}{\log 48} \\
& =2 \cdot \log \\
& =2 \mathrm{y} z
\end{aligned}
$$

2014 - December

[77] If $\log x=a+b, \log y=a-b$ then the value of $\log \frac{10 x}{y^{2}}=$ \qquad .
(a) $1-a+3 b$
(b) $a-1+3 b$
(c) $a+3 b+1$
(d) $1-b+3 a$

Answer:

(a) Given $\log x=a+b, \log y=a-b$
$\log \left(\frac{10 x}{y^{2}}\right)=\log 10 x-\log y^{2}$

$$
\begin{aligned}
& =\log 10+\log x-2 \log y \\
& =1+(a+b)-2(a-b) \\
& =1+a+b-2 a+2 b \\
& =1-a+3 b
\end{aligned}
$$

3.44

[78] If $x=1+\log _{p} q r, y=1+\log _{q}$ rp and $z=1+\log _{r} p q$ then the value of $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=$
(a) 0
(b) 1
(c) -1
(d) 3
(1 mark)

Answer:

(b) If $x=1+\log _{p} q r, y=1+\log _{q} r p, z=1+\log _{r} p q$

$$
x=1+\frac{\log q r}{\log p}
$$

$$
x=\frac{\log p+\log q r}{\log p}
$$

$$
x=\frac{\log p q r}{\log p}
$$

$$
\frac{1}{x}=\frac{\log p}{\log p q r}
$$

Similarly

$$
\begin{aligned}
& \frac{1}{y}=\frac{\log q}{\log p q r} \\
& \frac{1}{z}=\frac{\log r}{\log p q r} \\
& \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{\log p}{\log p q r}+\frac{\log q}{\log p q r}+\frac{\log r}{\log p q r} \\
& =\frac{\log p+\log q+\log r}{\log p q r} \\
& =\frac{\log p q r}{\log p q r} \\
& =1
\end{aligned}
$$

[79] For three months, the salary of a person are in the ratio 2:4:5. If the difference between the product of salaries of the first two months and last two months is ₹ $4,80,00,000$; then the salary of the person for the second month will be:
(a) ₹ 4,000
(b) ₹ 6,000
(c) ₹ 8,000
(d) ₹ 12,000

[Chapter $\operatorname{\| n}$ 1] Ratio and Proportion, Indices...

3.45

Answer:

(c) Ratio of the salary of a person in three months $=2: 4: 5$

$$
\text { Let, } \quad \begin{aligned}
& \text { Salary of } I^{\text {st }} \text { month }=2 x \\
& \text { Salary of } I^{\text {nd }} \text { month }=4 x \\
& \text { Salary of III }{ }^{\text {rd }} \text { month }=5 x
\end{aligned}
$$

Given
(Salary of Product of last two months) - (Salary of Product ${ }^{\text {st }}$ two months)

$$
\begin{aligned}
& =4,80,00,000 \\
(4 x .5 x)-(2 x .4 x) & =4,80,00,000 \\
20 x^{2}-8 x^{2} & =4,80,00,000 \\
12 x^{2} & =4,80,00,000 \\
x^{2} & =40,00,000 \\
x & =2,000
\end{aligned}
$$

Salary of the person for second month $=4 x=4 \times 2,000=8,000$

2015 - JUNE

[80] A dealer mixes rice costing ₹ 13.84 per Kg. with rice costing ₹ 15.54 and sells the mixture at ₹ 17.60 per Kg. So, he earns a profit of 14.6% on his sale price. The proportion in which he mixes the two qualities of rice is:
(a) $3: 7$
(b) $5: 7$
(c) $7: 9$
(d) $9: 11$
(1 mark)

Answer:

(a) Let SP of mixture is ₹ 100

$$
\begin{aligned}
\text { Then Profit } & =14.6 \% \text { of } 100 \\
& =14.6 \\
\mathrm{CP} \text { of mixture } & =(100-14.6) \\
& =85.4
\end{aligned}
$$

\because If SP is ₹ 100 then CP $=85.4$
\therefore If SP is $₹ 1$ then $\mathrm{CP}=\frac{85.4}{100}$

3.46
 Solv ed Scanner CA Foundation Paper - 3A (New Syllabus)

\therefore If SP is ₹ 17.60 then $\mathrm{CP}=\frac{85.4}{100} \times 17.60$

$$
=15.0304
$$

$\therefore \quad$ CP of the Mixture per $\mathrm{kg}=₹ 15.0304$

$$
\begin{aligned}
2^{\text {nd }} \text { difference } & =\text { Profit by SP } 1 \mathrm{~kg} \text { of } 2^{\text {nd }} \text { kind @ ₹ } 15.0304 \\
& =15.54-15.0304 \\
& =0.5096 \\
& =₹ 15.0304-13.84 \\
& =₹ 1.1904 \\
& =\begin{aligned}
& \text { st difference } \\
& \text { The Require Ratio }=\left(2^{\text {nd }} \text { difference }\right):\left(1^{\text {st }} \text { difference }\right) \\
&=0.5096: 1.1904 \\
&=3: 7
\end{aligned}
\end{aligned}
$$

[81] If $p^{x}=q, q^{y}=r$ and $r^{2}=p^{6}$, then the value of $x y z$ will be:
(a) 0
(b) 1
(c) 3
(d) 6

Answer:

(d) If $\mathrm{p}^{\mathrm{x}}=\mathrm{q}, \mathrm{q}^{\mathrm{y}}=\mathrm{r}$ and $\mathrm{r}^{2}=\mathrm{p}^{6}$

$$
\mathrm{q}=\mathrm{p}^{\mathrm{x}}, \mathrm{q}^{\mathrm{y}}=\mathrm{rand} \mathrm{r}^{2}=\mathrm{p}^{6}
$$

$$
\left(q^{y}\right)^{2}=p^{6}
$$

$$
\left[\left(p^{x}\right)^{y}\right]^{z}=p^{6}
$$

$$
\mathrm{p}^{\mathrm{xyz}}=\mathrm{p}^{6}=\mathrm{xyz}=6
$$

[82] If $\log x=m+n$ and $\log y=m-n$, then $\log \left(10 x / y^{2}\right)=$
(a) $3 n-m+1$
(b) $3 m-n+1$
(c) $3 \mathrm{n}+\mathrm{n}+1$
(d) $3 m+n+1$

Answer:
(a) $\log x=m+n$ and $\log y=m-n$

Then $\log \left(\frac{10 x}{y^{2}}\right)=\log 10 x-\log y^{2}$

$$
\begin{aligned}
& =\log 10+\log x-2 \log y \\
& =1+\log x-2 \log y \\
& =1+(m+n)-2(m-n) \\
& =1+m+n-2 m+2 n \\
& =3 n-m+1
\end{aligned}
$$

[Chapter $\mid 1 /$ 1] Ratio and Proportion, Indices...

3.47
[83] If $15\left(2 p^{2}-q^{2}\right)=7 p q$, where p and q are positive, then $p: q$ will be:
(a) $5: 6$
(b) $5: 7$
(c) $3: 5$
(d) $8: 3$

Answer:
(a) If $15\left(2 p^{2}-q^{2}\right)=7 p q$ $30 p^{2}-15 q^{2}=7 p q$ $30 p^{2}-7 p q-15 q^{2}=0$ $30 p^{2}-25 p q+18 p q-15 q^{2}=0$ $5 p(6 p-5 q)+3 q(6 p-5 q)=0$
$(6 p-5 q)(5 p+3 q)=0$
If $\quad 6 p-5 q=0$ and $5 p+3 q=0$
$6 p=5 q 5 p=-3 q$
$\frac{p}{q}=\frac{5}{6}=p: q=5: 6 \frac{p}{q}=\frac{-3}{5}$
(not possible)

2015 - December

[84] The ratio of third proportion of 12,30 to the mean proportion of 9,25 is:
(a) $2: 1$
(b) $5: 1$
(c) $7: 15$
(d) $3: 5$

Answer:

(b) The third proportion of 12,30
$c=\frac{b^{2}}{a}=\frac{(30)^{2}}{12}=\frac{900}{12}=75$
The Mean proportion of 9,25
$\mathrm{b}=\sqrt{\mathrm{ac}}=\sqrt{9 \times 25}=\sqrt{225}=15$
Ratio of third proportion of 12, 30
and Mean proportion of $9,25=75: 15$

$$
=5: 1
$$

[85] The value of $\log _{5} 3 \times \log _{3} 4 \times \log _{2} 5$.
(a) 0
(b) 1
(c) 2
(d) $\frac{1}{2}$
(1 mark)

Answer:

(c) $\log _{5} 3 \times \log _{3} 4 \times \log _{2} 5$

$$
\begin{aligned}
& =\frac{\log 3}{\log 5} \times \frac{\log 4}{\log 3} \times \frac{\log 5}{\log 2} \\
& =\frac{\log 4}{\log 2} \\
& =\frac{\log 2^{2}}{\log 2} \\
& =\frac{2 \log 2}{\log 2}=2
\end{aligned}
$$

[86] What number must be added to each of the numbers 10, 18, 22, 38 to make the numbers is proportion?
(a) 2
(b) 4
(c) 8
(d) None of these.

Answer:

(a) Let x to be added

Then $(10+x),(18+x),(22+x),(38+x)$ are in prop.
Product of Extremes $=$ Product of Mean
$(10+x)(38+x)=(18+x)(22+x)$ $380+10 x+38 x+x^{2}=396+18 x+22 x+x^{2}$ $48 x+380=396+40 x$
$48 x-40 x=396-380$
$8 x=16$
$x \quad=2$
[87] The value of $\frac{2^{n}+2^{n-1}}{2^{n+1}-2^{n}}$ is :
(a) $\frac{1}{2}$
(b) $\frac{3}{2}$
(c) $\frac{2}{3}$
(d) 2
(1 mark)

Answer:

(b) $\frac{2^{n}+2^{n-1}}{2^{n+1}-2^{n}}=\frac{2^{n}+2^{n} \cdot 2^{-1}}{2^{n} \cdot 2^{1}-2^{n}}$

$$
\begin{aligned}
& =\frac{2^{\prime}\left(1+2^{-1}\right)}{2^{n}\left(2^{1}-1\right)} \\
& =\frac{\left(\frac{1}{1}+\frac{1}{2}\right)}{(2-1)} \\
& =\frac{\left(\frac{2+1}{2}\right)}{1} \\
& =\left(\frac{3}{2}\right)
\end{aligned}
$$

2016 - JUNE

[88] The integral part of a logarithm is called \qquad and the decimal part of a logarithm is called \qquad .
(a) Mantissa, Characteristic
(b) Characteristic, Mantissa
(c) Whole, Decimal
(d) None of these.

Answer:

(b) The integral part of a logarithms is called Characteristic and the decimal part of a logarithm is called mantissa.
[89] The value of $\left[\frac{x^{2}-(y-z)^{2}}{(x+z)^{2}-y^{2}}+\frac{y^{2}-(x-z)^{2}}{(x+y)^{2}-z^{2}}+\frac{z^{2}-(x-y)^{2}}{(y+z)^{2}-x^{2}}\right]$ is
(a) 0
(b) 1
(c) -1
(d) ∞

Answer:
(b) $\frac{x^{2}-(y-z)^{2}}{(x+z)^{2}-y^{2}}+\frac{y^{2}-(x-z)^{2}}{(x+y)^{2}-z^{2}}+\frac{z^{2}-(x-y)^{2}}{(y+z)^{2}-x^{2}}$

$$
=\frac{(x+y-z)(x-y-z)}{(x+z+y)(x-y)}+\frac{(y+y-z)(y-x+z)}{(x+y+z)(x+y-z)}+\frac{(z+x-y)(z-x+y)}{(y+z+x)(y+z-x)}
$$

3.50 Solv ed Scanner CA Foundation Paper - 3A (New Syllabus)

$$
\begin{aligned}
& =\frac{x+y-z}{x+y+z}+\frac{y+z-x}{x+y+z}+\frac{z+x-y}{x+y+z} \\
& =\frac{x+y-z+y+z-x+z+x-y}{x+y+z} \\
& =\frac{x+y+z}{x+y+z}=1
\end{aligned}
$$

[90] $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ together starts a business. If X invests 3 times as much as Y invests and Y invests two third of what Z invests, then the ratio of capitals of X, Y, Z is:
(a) 3:9:2
(b) 6:3:2
(c) $3: 6: 2$
(d) 6:2:3

Answer:
(d) Given $x=3 y$ and $y=\frac{2}{3} z$

$$
\begin{aligned}
& \frac{x}{y}=\frac{3}{1} \text { and } \frac{y}{z}=\frac{2}{3} \\
& x: y=3: 1 \text { and } y: z=2: 3 \\
& =3 \times 2: 1 \times 2 \\
& =6: 2
\end{aligned}
$$

$$
x: y: z=6: 2: 3
$$

[91] If $\log _{4}\left(x^{2}+x\right)-\log _{4}(x+1)=2$, then the value of X is:
(a) 2
(b) 3
(c) 16
(d) 8

Answer:

(c) If $\log _{4}\left(x^{2}+x\right)-\log _{4}(x+1)=2$

$$
\begin{aligned}
\Rightarrow & \log _{4}\left\{\frac{\left(x^{2}+x\right)}{(x+1)}\right\}=2 \\
\Rightarrow & \log _{4}\left\{\frac{x(x+1)}{(x+1)}\right\}=2 \\
\Rightarrow & \log _{4} x=2 \\
& x=4^{2} \\
& x=16
\end{aligned}
$$

[92] Value of $\frac{1}{\log _{3}^{60}}+\frac{1}{\log _{4}^{60}}+\frac{1}{\log _{5}^{60}}$ is :
(a) 0
(b) 1
(c) 5
(d) 60
(1 mark)
Answer:
(b) $\frac{1}{\log _{3} 60}+\frac{1}{\log _{4} 60}+\frac{1}{\log _{5} 60}$

$$
=\log _{60} 3+\log _{60} 4+\log _{60} 5
$$

$$
=\log _{60}(3 \times 4 \times 5)
$$

$$
=\log _{60} 60
$$

$$
=1
$$

2016 - December

[93] If $3^{x}=5^{y}=75^{z}$, then
(a) $x+y-z=0$
(b) $\frac{2}{x}+\frac{1}{y}=\frac{1}{z}$
(c) $\frac{1}{x}+\frac{2}{y}=\frac{1}{z}$
(d) $\frac{2}{x}+\frac{1}{z}=\frac{1}{y}$
(1 mark)

Answer:

(c) If $\quad 3^{x}=5^{y}=75^{z}=k$ (let)
then

$$
\begin{aligned}
& 3^{x}=k, 5^{y}=k, 75^{z}=k \\
& 3=k^{1 / x}, 5=k^{1 / y}, 75=k^{1 / 2}
\end{aligned}
$$

we know that

$$
\begin{aligned}
75 & =3 \times 5 \times 5 \\
k^{\frac{1}{z}} & =k^{\frac{1}{x}} \cdot k^{\frac{1}{y}} \cdot k^{\frac{1}{y}} \\
k^{\frac{1}{z}} & =k^{\frac{1}{x}+\frac{1}{y}+\frac{1}{y}}
\end{aligned}
$$

3.52
 Solv ed Scanner CA Foundation Paper - 3A (New Syllabus)

$$
\begin{aligned}
& \text { on comparing } \\
& \frac{1}{z}=\frac{1}{x}+\frac{1}{y}+\frac{1}{y} \\
& \frac{1}{z}=\frac{1}{x}+\frac{2}{y} \\
& \frac{1}{x}+\frac{2}{y}=\frac{1}{z}
\end{aligned}
$$

[94] If $\log 2=0.3010$ and $\log 3=0.4771$, then the value of $\log 24$ is:
(a) 1.0791
(b) 1.7323
(c) 1.3801
(d) 1.8301
(1 mark)

Answer:

(c) If $\log 2=0.3010$ and $\log 3=0.4771$
then $\log 24=\log (2 \times 2 \times 2 \times 3)$
$=\log 2+\log 2+\log 2+\log 3$
$=3 \log 2+\log 3$
$=3 \times 0.3010+0.4771$
$=0.9030+0.4771$
$=1.3801$
[95] If $a b c=2$, then the value of $\frac{1}{1+a+2 b^{-1}}+\frac{1}{1+\frac{1}{2} b+c^{-1}}+\frac{1}{1+c+a^{-1}}$ is:
(a) 1
(b) 2
(c) 3
(d) $\frac{1}{2}$

Answer:
(a) If $a b c=2$

$$
\begin{array}{ll}
\mathrm{ab}=\frac{2}{c}=2 \mathrm{c}^{-1} & \mathrm{a}=\frac{2}{\mathrm{bc}}=2 \mathrm{~b}^{-1} \mathrm{c}^{-1} \\
\mathrm{bc}=\frac{2}{a}=2 \mathrm{a}^{-1} & \mathrm{~b}=\frac{2}{\mathrm{ca}}=2 \mathrm{c}^{-1} \mathrm{a}^{-1} \\
\mathrm{ca}=\frac{2}{\mathrm{~b}}=2 \mathrm{~b}^{-1} & \mathrm{c}=\frac{2}{\mathrm{ab}}=2 \mathrm{a}^{-1} \mathrm{~b}^{-1}
\end{array}
$$

Given $\frac{1}{1+a+2 b^{-1}}+\frac{1}{1+\frac{1}{2} b+c^{-1}}+\frac{1}{1+c+a^{-1}}$

$$
\begin{aligned}
& =\frac{1}{1+a+2 b^{-1}}+\frac{2 b^{-1}}{2 b^{-1}\left(1+\frac{1}{2} b+c^{-1}\right)}+\frac{a}{a\left(1+c+a^{-1}\right)} \\
& =\frac{1}{\left(1+a+2 b^{-1}\right)}+\frac{2 b^{-1}}{2 b^{-1}+1+2 b^{-1} c^{-1}}+\frac{a}{a+a c+1} \\
& =\frac{1}{1+a+2 b^{-1}}+\frac{2 b^{-1}}{2 b^{-1}+1+a}+\frac{a}{a+2 b^{-1}+1} \\
& =\frac{1+2 b^{-1}+a}{1+a+2 b^{-1}} \\
& =1
\end{aligned}
$$

[96] There are total 23 coins of ₹ 1 , ₹ 2 and ₹ 5 in a bag. If their value is $₹ 43$ and the ratio of coins of $₹ 1$ and $₹ 2$ is $3: 2$. Then the number of coins of $₹ 1$ is:
(a) 12
(b) 5
(c) 10
(d) 14
(1 mark)

Answer:

(a) Total no. of coins $=23$

Ratio of ₹ 1 coin : ₹ 2 coins $=3: 2$
let No. of ₹ 1 coins $=3 x$
No. of ₹ 2 coins $=2 x$
No. of ₹ 5 coins $\quad=23-3 x-2 x$
$=23-5 x$
Total value of all coins $=43$

$$
\begin{gathered}
3 x \times 1+2 x \times 2+(23-5 x) 5=43 \\
3 x+4 x+115-25 x=43 \\
-18 x=43-115 \\
-18 x=-72 \\
x=\frac{-72}{-18}=4
\end{gathered}
$$

No. of $₹ 1$ coins $=3 x=3 \times 4=12$

2017 - June

[97] If $a: b=2: 3, b: c=4: 5$ and $c: d=6: 7$, then $a: d$ is:
(a) $24: 35$
(b) $8: 15$
(c) $16: 35$
(d) $7: 15$

Answer:

(c) $\mathrm{a}: \mathrm{b}=2: 3 \Rightarrow \frac{\mathrm{a}}{\mathrm{b}}=\frac{2}{3}$ \qquad
$b: c=4: 5 \Rightarrow \frac{b}{c}=\frac{4}{5}$ \qquad
$\mathrm{c}: \mathrm{d}=6: 7 \Rightarrow \frac{\mathrm{c}}{\mathrm{d}}=\frac{6}{7}$ \qquad
Multiply equation (i) \& (ii) \& (iii)
$\frac{a}{b} \times \frac{b}{c} \times \frac{c}{d}=\frac{2}{3} \times \frac{4}{5} \times \frac{6}{7}=\frac{16}{35}$
[98] The value of $\log \left(1^{3}+2^{3}+3^{3}+\ldots \ldots . n^{3}\right)$ is equal to:
(a) $3 \log 1+3 \log 2+\ldots \ldots+3 \log n$
(b) $2 \log n+2 \log (n+1)-2 \log 2$
(c) $\log \mathrm{n}+\log (\mathrm{n}+1)+\log (2 \mathrm{n}+1)-\log 6$
(d) 1

Answer:

(b) $\log \left(1^{3}+2^{3}+3^{3}+\cdots----n^{3}\right)$

$$
=\log \left(\Sigma n^{3}\right)
$$

$$
=\log \left[\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right]^{2}
$$

$$
=2 \log \left[\frac{n(n+1)}{2}\right]
$$

$$
=2[\log n+\log (n+1)-\log 2]
$$

$$
=2 \log n+2 \log (n+1)-2 \log 2
$$

[99] If $a=\frac{\sqrt{6}+\sqrt{5}}{\sqrt{6}-\sqrt{5}}$ and $b=\frac{\sqrt{6}-\sqrt{5}}{\sqrt{6}+\sqrt{5}}$ then the value of $\frac{1}{a^{2}}+\frac{1}{b^{2}}$ is equal to:
(a) 480
(b) 482
(c) 484
(d) 486

Answer:

(b) If $\mathrm{a}=\frac{\sqrt{6}+\sqrt{5}}{\sqrt{6}-\sqrt{5}}$ and $\mathrm{b}=\frac{\sqrt{6}-\sqrt{5}}{\sqrt{6}+\sqrt{5}}$

$$
a+b=\frac{\sqrt{6}+\sqrt{5}}{\sqrt{6}-\sqrt{5}}+\frac{\sqrt{6}-\sqrt{5}}{\sqrt{6}+\sqrt{5}}
$$

$$
=\frac{(\sqrt{6}+\sqrt{5})^{2}+(\sqrt{6}-\sqrt{5})^{2}}{(\sqrt{6}-\sqrt{5})(\sqrt{6}+\sqrt{5})}
$$

$$
=\frac{6+5+2 \sqrt{30}+6+5-2 \sqrt{30}}{(\sqrt{6})^{2}-(\sqrt{5})^{2}}
$$

$$
=\frac{22}{6-5}=\frac{22}{1}=22
$$

$$
a \cdot b=\left(\frac{\sqrt{6}+\sqrt{5}}{\sqrt{6}-\sqrt{5}}\right)\left(\frac{\sqrt{6}-\sqrt{5}}{\sqrt{6}+\sqrt{5}}\right)=1
$$

$$
\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{b^{2}+a^{2}}{a^{2} b^{2}}=\frac{(a+b)^{2}-2 a b}{(a b)^{2}}
$$

$$
=\frac{(22)^{2}-2 \times 1}{(1)^{2}}=\frac{484-2}{1}=482
$$

2017 - December

[100] The ratio of the number of $₹ 5$ coins and $₹ 10$ coins is $8: 15$. If the value of $₹ 5$ coins is ₹ 360 , then the number of $₹ 10$ coins will be:
(a) 72
(b) 120
(c) 135
(d) 185

Answer:

(c) Ratio of ₹ 5 coins and ₹ 10 coins $=8: 15$

Let the No. of ₹ 5 coins $=8 x$
and the No. of $₹ 10$ coins $=15 x$
The value of $₹ 5$ coins $=₹ 5 \times 8 x$
$360=40 x$

3.56

$$
\begin{array}{ll}
x & =\frac{360}{40} \\
x & =9
\end{array}
$$

No. of $₹ 10$ coins $=15 x$

$$
\begin{aligned}
& =15 \times 9 \\
& =135
\end{aligned}
$$

[101] If $\log _{3}\left[\log _{4}\left(\log _{2} x\right)\right]=0$, then the value of ' x ' will be:
(a) 4
(b) 8
(c) 16
(d) 32

Answer:
(c) If $\log _{3}\left[\log _{4}\left(\log _{2} x\right)\right]=0$

$$
\begin{array}{ll}
\log _{4}\left(\log _{2} x\right)=3^{0} & {\left[\because \log _{a} b=x \Rightarrow b=a^{x}\right]} \\
\log _{4}\left(\log _{2} x\right)=1 \\
\log _{2} x=4^{1} \\
\log _{2} x=4 \\
x=2^{4} & \\
x=16
\end{array}
$$

[102] If $\log \left(\frac{x-y}{2}\right)=\frac{1}{2}(\log x+\log y)$, then the value of $x^{2}+y^{2}=$
(a) $2 x y$
(b) $4 x y$
(c) $2 x^{2} y^{2}$
(d) $6 x y$

Answer:

(d) If $\log \left(\frac{x-y}{2}\right)=\frac{1}{2}(\log x+\log y)$
$2 \log \left(\frac{x-y}{2}\right)=\log x+\log y$
$\log \left(\frac{x-y}{2}\right)^{2}=\log (x y)$
$\Rightarrow\left(\frac{x-y}{2}\right)^{2}=x y$
$\Rightarrow\left(\frac{x-y}{4}\right)^{2}=x y$
$\Rightarrow x^{2}+y^{2}-2 x y=4 x y$
$\Rightarrow x^{2}+y^{2}=4 x y+2 x y$
$\Rightarrow x^{2}+y^{2}=6 x y$
[103] If $\frac{1}{2}, \frac{1}{3}, \frac{1}{5}$ and $\frac{1}{x}$ are in proportion, then the value of ' x ' will be:
(a) $\frac{15}{2}$
(b) $\frac{6}{5}$
(c) $\frac{10}{3}$
(d) $\frac{5}{6}$

Answer:

(a) If $\frac{1}{2}, \frac{1}{3}, \frac{1}{5}, \frac{1}{x}$ are in proportion
then, product of extremes = Product of means
$\frac{1}{2} \times \frac{1}{x}=\frac{1}{3} \times \frac{1}{5}$
$\frac{1}{2 x}=\frac{1}{15}$
$2 x=15$
$x=15 / 2$

2018 - MAY

[104] If $p: q$ is the sub-duplicate ratio of $p-x^{2}: q-x^{2}$, then x^{2} is:
(a) $\frac{p}{p+q}$
(b) $\frac{q}{p+q}$
(c) $\frac{q p}{p-q}$
(d) None.
(1 mark)

Answer:

(d) Sub duplicate ratio of $\left(p-x^{2}\right):\left(q-x^{2}\right)=\sqrt{p-x^{2}}: \sqrt{q-x^{2}}$
$p: q=\sqrt{p-x^{2}}: \sqrt{q-x^{2}}$
$\frac{p}{q}=\frac{\sqrt{p-x^{2}}}{\sqrt{q-x^{2}}}$
an squaring both side

$$
\frac{p^{2}}{q^{2}}=\frac{p-x^{2}}{q-x^{2}}
$$

3.58 Solv ed Scanner CA Foundation Paper - 3A (New Syllabus)

$$
\begin{aligned}
& p^{2}\left(q-x^{2}\right)=q^{2}\left(p-x^{2}\right) \\
& p^{2} q-p^{2} x^{2}=q^{2} p-q^{2} x^{2} \\
& p^{2} q-q^{2} p=p^{2} x^{2}-q^{2} x^{2} \\
& p q(p-q)=\left(p^{2}+q^{2}\right) x^{2} \\
& p q(p-q)=(p+q)(p-q) x^{2} \\
& x^{2}=\frac{p q(p-q)}{(p+q)(p-q)} \\
& x^{2}=\frac{p q}{(p+q)}
\end{aligned}
$$

[105] The value of the expression:
$a^{\log _{a} b \cdot \log _{b}^{c} \cdot \log _{c}^{d} \cdot \log _{d} t}$
(a) t
(b) abcdt
(c) $(\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}+\mathrm{t})$
(d) None

Answer:

(a) $a^{\log _{a}^{b} \cdot \log _{b}^{c} \cdot \log _{c}^{d} \cdot \log _{d}^{f}}$

$$
\begin{aligned}
& =a \frac{\log ^{b}}{\log ^{a}} \cdot \frac{\log ^{\mathrm{c}}}{\log ^{\mathrm{b}}} \cdot \frac{\log ^{d}}{\log ^{\mathrm{c}}} \cdot \frac{\log ^{t}}{\log ^{d}} \\
& =\mathrm{a} \frac{\log ^{t}}{\log ^{\mathrm{a}}} \\
& =\mathrm{a} \log _{a}^{t} \quad\left[\because \quad e^{\log _{e}^{\mathrm{x}}}=\mathrm{x}\right] \\
& =\mathrm{t}
\end{aligned}
$$

[106] The mean proportional between 24 and 54 is:
(a) 33
(b) 34
(c) 35
(d) 36

Answer:
(d) Mean proportion $\mathrm{b}=\sqrt{\mathrm{ac}}$

$$
\begin{aligned}
& =\sqrt{24 \times 54} \\
& =\sqrt{1,296} \\
& =36
\end{aligned}
$$

[107] The value of $\log _{4} 9 . \log _{3} 2$ is:
(a) 3
(b) 2
(c) 9
(d) 1

[Chapter $1=1$ 1] Ratio and Proportion, Indices...

3.59

Answer:

(d) $\log _{4} 9 \cdot \log _{3} 2=\frac{\log 9}{\log 4} \cdot \frac{\log 2}{\log 3}$

$$
\begin{aligned}
& =\frac{\log 3^{2}}{\log 2^{2}} \cdot \frac{\log 2}{\log 3} \\
& =\frac{2 \log 3}{2 \log 2} \cdot \frac{\log 2}{\log 3} \\
& =1
\end{aligned}
$$

[108] $\frac{2^{n}+2^{n-1}}{2^{n+1}-2^{n}}$
(a) $\frac{1}{2}$
(b) $\frac{3}{2}$
(c) $\frac{2}{3}$
(d) $\frac{1}{3}$

Answer:
(b) $\frac{2^{n}+2^{n-1}}{2^{n+1}-2^{n}}=\frac{2^{n}+2^{n} \cdot 2^{-1}}{2^{n} \cdot 2^{+1}-2^{n}}$
$=\frac{2^{n}+\left(1+2^{-1}\right)}{2^{n} \cdot(2-1)}$
$=\frac{\left(1+\frac{1}{2}\right)}{1}$
$=\frac{\frac{3}{2}}{1}$
$=\frac{3}{2}$

3.60

2018 - November

[109] $\frac{3 x-2}{5 x+6}$ is the duplicate ratio of $\frac{2}{3}$ then find the value of x :
(a) 2
(b) 6
(c) 5
(d) 9

Answer:

(b) $\because \quad \frac{3 x-2}{5 x+6}$ is the duplicate ratio of $\frac{2}{3}$
i.e. $\quad \frac{3 x-2}{5 x+6}=\frac{2^{2}}{3^{2}}$
$\Rightarrow \quad \frac{3 x-2}{5 x+6}=\frac{4}{9}$
$27 x-18=20 x+24$

$$
27 x-20 x=24+18
$$

$$
7 x=42
$$

$$
X=6
$$

[110] $\frac{2^{m+1} \times 3^{2 m-n+3} \times 5^{n+m+4} \times 6^{2 n+m}}{6^{2 m+n} \times 10^{n+1} \times 15^{m+3}}$
(a) $3^{2 m-2 n}$
(b) $3^{2 n-2 m}$
(c) 1
(d) None of the above

Answer:
(c) $\frac{2^{m+1} \times 3^{2 m-n+3} \times 5^{n+m+4} \times 6^{2 n+m}}{6^{2 m+n} \times 10^{n+1} \times 15^{m+3}}$

$$
=\frac{2^{m+1} \times 3^{2 m-n+3} \times 5^{n+m+4} \times(2 \times 3)^{2 n+m}}{(2 \times 3)^{2 m+n} \times(2 \times 5)^{n+1} \times(3 \times 5)^{m+3}}
$$

$$
=\frac{2^{m+1} \times 3^{2 m-n+3} \times 5^{n+m+4} \times 2^{2 n+m} \times 3^{2 n+m}}{2^{2 m+n} \times 3^{2 m+n} \times 2^{n+1} \times 5^{n+1} \times 3^{m+3} \times 5^{m+3}}
$$

$$
=\frac{2^{m+1+2 n+m} \times 3^{2 m-n+3+2 n+m} \times 5^{n+m+4}}{2^{2 m+n+n+1} \times 3^{2 m+n+m+3} \times 5^{n+1+m+3}}
$$

$$
=\frac{2^{2 m+2 n+1} \times 3^{3 m+n+3} \times 5^{m+n+4}}{2^{2 m+2 n+1} \times 3^{3 m+n+3} \times 5^{m+n+4}}=1
$$

[111] If $x: y: z=7: 4: 11$ then $\frac{x+y+z}{z}$ is:
(a) 2
(b) 3
(c) 4
(d) 5
(1 mark)
Answer:
(a) If $\quad x: y: z=7: 4: 11$

Let $x=7 k, y=4 k, z=11 k$ $\frac{x+y+z}{2}=\frac{7 k+4 k+11 k}{11 k}=\frac{22 k}{11 k}=2$
[112] $\log _{2} \log _{2} \log _{2} 16=$?
(a) 0
(b) 3
(c) 1
(d) 2

Answer:
(c) $\log _{2} \log _{2} \log _{2}{ }^{16}$

$$
\begin{aligned}
& =\log _{2} \log _{2}\left(\log _{2}{ }^{24}\right) \\
& =\log _{2} \log _{2}{ }^{4} \log _{2}^{2} \\
& =\log _{2} \log _{2}^{4} \\
& =\log _{2} \log _{2}{ }^{2} 2 \\
& =\log _{2}{ }^{2} \cdot \log _{2}{ }^{2} \\
& =1 \times 1 \\
& =1
\end{aligned}
$$

2019 - June
[113] If the ratio of two numbers is $7: 11$. If 7 is added to each number then the new ratio will be $2: 3$ then the numbers are.
(a) 49,77
(b) 42, 45
(c) 43,42
(d) 39,40

3.62

Answer:
(a) Ratio of two Numbers $=7: 11$

Let ${ }^{\text {st }} \mathrm{No}=7 \mathrm{x}$
II ${ }^{\text {nd }} \mathrm{No}=11 \mathrm{x}$
Given Condition
$(7 x+7):(11 x+7)=2: 3$

$$
\frac{7 x+7}{11 x+7}=\frac{2}{3}
$$

$$
21 x+21=22 x+14
$$

$$
21-14=22 x-21 x
$$

$$
7=x
$$

$\left.\right|^{\text {st }} \mathrm{No}=7 \mathrm{x}=7 \times 7=49$
$1 I^{\text {nd }} \mathrm{No}=11 \mathrm{x}=11 \times 7=77$
[114] If $2^{x^{2}}=3^{y^{2}}=12^{z^{2}}$ then
(a) $\frac{1}{x^{2}}+\frac{1}{y^{2}}=\frac{1}{z^{2}}$
(b) $\frac{1}{x^{2}}+\frac{2}{y^{2}}=\frac{1}{z^{2}}$
(c) $\frac{2}{x^{2}}+\frac{1}{y^{2}}=\frac{1}{z^{2}}$
(d) None

Answer:
(c) If $\quad 2^{x^{2}}=3^{y^{2}}=12^{z^{2}}=K$

$$
2^{x^{2}}=K, 3^{y^{2}}=K, 12^{z^{2}}=K
$$

$2=K^{\frac{1}{x^{2}}}, 3=K^{\frac{1}{y^{2}}}, 12=K^{\frac{1}{z^{2}}}$
Now,
$12=2 \times 2 \times 3$
$K^{\frac{1}{2^{2}}}=K^{\frac{1}{x^{2}}} \times K^{\frac{1}{x^{2}}} \times K^{\frac{1}{y^{2}}}$
$K^{\frac{1}{z^{2}}}=K^{\frac{1}{x^{2}}+\frac{1}{x^{2}}+\frac{1}{y^{2}}}$

On comparing

$$
\begin{aligned}
& \frac{1}{z^{2}}=\frac{1}{x^{2}}+\frac{1}{x^{2}}+\frac{1}{y^{2}} \\
& \frac{1}{z^{2}}=\frac{2}{x^{2}}+\frac{1}{y^{2}}
\end{aligned}
$$

[115] The value of
$\log _{5},\left(1+\frac{1}{5}\right)+\log _{5}\left(1+\frac{1}{6}\right)+\cdots--\cdots-\cdots+\log _{5},\left(1+\frac{1}{624}\right)$
(a) 2
(b) 3
(c) 5
(d) 0

Answer:
(b) If $\log _{5}\left(1+\frac{1}{5}\right)+\log _{5}\left(1+\frac{1}{6}\right)+\ldots \ldots \ldots \ldots \ldots \ldots+\log _{5}\left(1+\frac{1}{624}\right)$

$$
\begin{aligned}
& =\log \left(\frac{6}{5}\right)+\log \left(\frac{7}{6}\right) \log \left(\frac{8}{7}\right)+\ldots \ldots \ldots \ldots \ldots+\log \left(\frac{625}{624}\right) \\
& =\log _{5}\left(\frac{6}{5} \times \frac{7}{6} \times \frac{8}{7} \times \ldots \ldots \ldots \frac{624}{623} \times \frac{625}{624}\right) \\
& =\log _{5}\left(\frac{625}{5}\right) \\
& =\log _{5}(125)=\log _{5} 5^{3} \\
& =3 \log _{5} 5 \\
& \\
& =3 \times 1 \\
&
\end{aligned}
$$

[116] $\log _{2 \sqrt{2}}(512): \log _{3 \sqrt{2}} 324=$
(a) $128: 81$
(b) $2: 3$
(c) $3: 2$
(d) None

Answer:
(c) $\log _{2 \sqrt{2}} 512: \log _{3 \sqrt{2}} 324$
$=\frac{\log 512}{\log 2 \sqrt{2}}: \frac{\log 324}{\log 3 \sqrt{2}}$

$$
\begin{aligned}
& =\frac{\log (8)^{3}}{\log \sqrt{2 \times 2 \times 2}}: \frac{\log 18^{2}}{\log \sqrt{3 \times 3 \times 2}} \\
& =\frac{\log (8)^{3}}{\log (8)^{1 / 2}}: \\
& =\frac{3 \log 8}{1 / 2 \log 8}: \\
& \quad(3 \times 2) \\
& =6: 4 \\
& =3: 2
\end{aligned}
$$

[117] If $P=x^{1 / 3}+x^{-1 / 3}$ then $P^{3}=3 P=$
(a) 3
(b) $\frac{1}{2}\left(x+\frac{1}{x}\right)$
(c) $\left(x+\frac{1}{x}\right)$
(d) $2\left(x+\frac{1}{x}\right)$

Answer:

(c) If $P=x^{1 / 3}+n^{-1 / p}$ then $P^{3}-3 P$

Given $P=x^{1 / 3}+x^{-1 / p}$
Cube on both side
$P^{3}=\left(x^{1 / 3}+x^{-1 / p}\right)^{3}$
$P^{3}=\left(x^{1 / 3}\right)^{3}+\left(x^{-1 / p}\right)^{3}+3 x^{1 / 3} \cdot x^{-1 / 3}\left(x^{1 / 3}+x^{-1 / 3}\right)$
$=x+x^{-1}+3 \times 1 \times P$
$P^{3}=x+\frac{1}{x}+3 P$
$P^{3}-3 P=x+\frac{1}{x}$

2019 - November

[118] The ratio of two numbers are $3: 4$. The difference of their squares is 28 Greater no. is:
(a) 8
(b) 12
(c) 24
(d) 64 .
(1 mark)

Answer:

(a) Let the two numbers be x and y

Greater no. y
Smaller no. x
According to question,

$$
\frac{x}{y}=\frac{3}{4} \quad-\operatorname{Eq} 1 \quad \text { and } \quad y^{2}-x^{2}=28 \quad-E q 2
$$

Further solving Eq 1
$x=\frac{3}{4} y \quad-\operatorname{Eq} 3$
Put Eq 3 in Eq 2
$y^{2}-\left(\frac{3}{4} y\right)^{2}=28$
$\frac{y^{2}}{1}-\frac{9 y^{2}}{16}=28$
$\frac{7 y^{2}}{16}=28$
$y^{2}=\frac{28 \times 16}{7}$
$y^{2}=64$
$\Rightarrow y=8$
\{square root both sides\}
So, the greater number i.e. y is equal to 8 .

3.66

 Solv ed Scanner CA Foundation Paper - 3A (New Syllabus)[119] The price of scooter and moped are in the ratio $7: 9$. The price of moped is ₹ 1,600 more than that of scooter. Then the price of moped is:
(a) ₹ 7,200
(b) ₹ 5,600
(c) ₹ 800
(d) ₹ 700

Answer:

(a) $\frac{\text { Price of scooter }}{\text { Price of Moped }}=\frac{7}{9}$

Let; the price of scooter $=7 x$ and price of moped $=9 x$
According to question

$$
\begin{aligned}
& 9 x=7 x+1600 \\
& 2 x=1600 \\
& x=₹ 800
\end{aligned}
$$

So, price of moped $=9 x=9(800)=₹ 7200$
[120] $\log _{0.01} 10,000=$?
(a) 2
(b) -2
(c) 4
(d) -4

Answer:
(b) $\log _{0.01} 10,000$
$\frac{\log 10,000}{\log 0.01}$ Since $\log { }_{a} b=\frac{\log b}{\log a}$
$\frac{\log (10)^{4}}{\log \left(\frac{1}{100}\right)}$
$\because \log a^{n}=n \log a$
$\frac{4 \times \log 10}{\log 1-\log 100}$
$\because \log \left(\frac{b}{a}\right)=\log b-\log a$
$\frac{4 \times 1}{0-\log (10)^{2}}$
$\log 10=1$
$\frac{4}{-2 \log 10}=\frac{4}{-2 \times 1}=-2$

$$
\log 1=0
$$

[Chapter $\mid 1 /$ 1] Ratio and Proportion, Indices...

[121] Value of $\left[9^{n+\frac{1}{4}} \cdot \frac{\sqrt{3 \cdot 3^{n}}}{3 \cdot \sqrt{3^{-n}}}\right]^{\frac{1}{n}}$
(a) 9
(b) 27
(c) 81
(d) 3

Answer:

$$
\begin{aligned}
\text { (b) } & =\left[\frac{9^{n+\frac{1}{4}} \sqrt{3^{(n+1)}}}{3 \cdot \sqrt{3^{-n}}}\right]^{\frac{1}{n}} \\
& =\left[\frac{3^{2 n+\frac{1}{2}} \cdot 3^{\frac{(n+1)}{2}}}{3 \cdot 3^{-n / 2}}\right]^{\frac{1}{n}} \\
& =\left[\frac{3^{2 n+\frac{1}{2}+\frac{n}{2}+\frac{1}{2}}}{3^{1-n / 2}}\right]^{\frac{1}{n}} \\
& =\left[(3)^{\frac{5 n}{2}+1-1+\frac{n}{2}}\right]^{\frac{1}{n}} \\
& =\left[(3)^{\frac{6 n}{2}}\right]^{\frac{1}{n}} \\
& =(3)^{3} \\
& =27
\end{aligned}
$$

[122] If $x=\sqrt{3}+\frac{1}{\sqrt{3}}$ then $\left(x-\frac{\sqrt{126}}{\sqrt{42}}\right)\left(x-\frac{1}{x-\frac{2 \sqrt{3}}{3}}\right)=$?
(a) $5 / 6$
(b) $6 / 5$
(c) $2 / 3$
(d) $-3 / 5$

Answer:
(a) $x=\sqrt{3}+\frac{1}{\sqrt{3}}----\cdots-----$ - Equation (1)

3.68 Solv ed Scanner CA Foundation Paper - 3A (New Syllabus)

$$
\begin{aligned}
& =(x-\sqrt{3})=\frac{1}{\sqrt{3}}-\cdots--- \text { Equation (2) }\left(x-\frac{1}{\sqrt{3}}\right)=\sqrt{3} \text { - Equation (3) } \\
& \left(x \frac{\sqrt{126}}{\sqrt{42}}\right)\left(x \frac{-1}{\left(x-\frac{2 \sqrt{3}}{\sqrt{3}}\right)}\right) \\
& \left(x \frac{-3 \sqrt{14}}{\sqrt{3} \times \sqrt{14}}\right)\left(x \frac{-1}{\frac{x-1}{\sqrt{3}} \frac{-1}{\sqrt{3}}}\right) \\
& (x-\sqrt{3})\left(x \frac{-1}{\sqrt{3} \frac{-1}{\sqrt{3}}}\right) \\
& \{\text { from Equation (2) \& (3) \} } \\
& \frac{1}{\sqrt{3}} \times\left(x \frac{-\sqrt{3}}{2}\right) \\
& \frac{1}{\sqrt{3}} x-\frac{1}{2} \\
& \frac{1}{\sqrt{3}}\left(\sqrt{3}+\frac{1}{\sqrt{3}}\right) \frac{-1}{2} \\
& 1+\frac{1}{3}-\frac{1}{2} \\
& =\frac{5}{6}
\end{aligned}
$$

[123] if $a: b=3: 7$, then $3 a+2 b: 4 a+5 b=$?
(a) $23: 47$
(b) $27: 43$
(c) $24: 51$
(d) $29: 53$

[Chapter $\mid 1 /$ 1] Ratio and Proportion, Indices...

Answer:

(a) If $\mathrm{a}: \mathrm{b}=3: 7$
let $a=3 k, b=7 k$

$$
\begin{aligned}
& \frac{3 a+2 b}{4 a+5 b}=\frac{3 \times 3 k+2 \times 7 k}{4 \times 3 k+5 \times 7 k}=\frac{9 k+14 k}{12 k+35 k} \\
& =\frac{23 k}{47 k} \\
& =23: 47
\end{aligned}
$$

[124] if $\log _{a} \sqrt{3}-1 / 6$, find the value of Q :
(a) 9
(b) 81
(c) 27
(d) 3

Answer:
(c) If $\log _{a} \sqrt{3}=\frac{1}{6}$

$$
\begin{aligned}
& \sqrt{3}=a^{1 / 6} \\
& a^{1 / 6}=\sqrt{3} \\
& \quad a^{1 / 6}=3^{1 / 2} \\
& a=\left(3^{1 / 2}\right)^{6} \\
& a=3^{3} \\
& a=27
\end{aligned}
$$

[125] $\log 9+\log 5$ is expressed as:
(a) $\log 4$
(b) $\log 9 / 5$
(c) $\log 5 / 9$
(d) $\log 45$

Answer:
(d) $\log 9+\log 5=\log (9 \times 5)$ $=\log 45$
$[\log m+\log n=\log (m \times n)]$
[126] if $a: b=9: 4$, then $\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}=$?
(a) $3 / 2$
(b) $2 / 3$
(c) $6 / 13$
(d) $13 / 6$

Answer:
(d) If $\mathrm{a}: \mathrm{b}=9: 4$
let $a=9 k, b=4 k$
$\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}=\sqrt{\frac{9 k}{4 k}}+\sqrt{\frac{4 k}{9 k}}$
$=\frac{3}{2}+\frac{2}{3}=\frac{9+4}{6}=\frac{13}{6}$
[127] The ratio of number of boys and the number of girls in a school is found to be $15: 32$. How many boys and equal number of girls should be added to bring the ratio to $2 / 3$?
(a) 19
(b) 20
(c) 23
(d) 27

Answer:
(a) Let No of boys and girl should be added to be x each.

According to question
$\frac{15+x}{32+x}>\frac{2}{3}$
$45+3 x=64+2 x$
$3 x-2 x=64-45$
$x=19$
[128] Find the value of a from the following:
$\sqrt{(9)}^{-5} \times \sqrt{(3)}^{-7}-\sqrt{(3)}^{-a}$
(a) 11
(b) 13
(c) 15
(d) 17

[Chapter "1-1] Ratio and Proportion, Indices...

Answer:

(d) Here $(\sqrt{9})^{-5} \times(\sqrt{3})^{-7}=(\sqrt{3})^{-a}$

$$
3^{-5} \times\left(3^{1 / 2}\right)^{-7}=\left(3^{1 / 2}\right)^{-2}
$$

$$
3^{-5} \times 3^{-7 / 2}=3^{\frac{-a}{2}}
$$

$$
3^{-5-\frac{7}{2}}=3^{\frac{-a}{2}}
$$

on company
$-5-\frac{7}{2}=\frac{-a}{2}$
$\frac{17}{2}=\frac{1 a}{2}$

$$
a=17
$$

2021 - JANUARY

[129] Find the value of $\frac{3 t^{-1}}{t^{-1 / 3}}$
(a) $\frac{3}{\mathrm{t}^{2 / 3}}$
(b) $\frac{3}{t^{3 / 2}}$
(c) $\frac{3}{t^{1 / 3}}$
(d) $\frac{3}{\mathrm{t}^{2}}$

Answer:
(a) $\frac{3 t^{-1}}{t^{-1 / 3}}=\frac{3}{t^{-1 / 3+1}}=\frac{3}{t^{2 / 3}}$
[130] If $\log _{a}(a b)=x$, then $\log _{b}(a b)$ is
(a) $1 / x$
(b) $\frac{x}{1+x}$

3.72
 Solv ed Scanner CA Foundation Paper - 3A (New Syllabus)

(c) $\frac{x}{x-1}$
(d) None of these

Answer:
(c) If $\log _{a}(a b)=x$

$$
\log _{a} a+\log _{a} b=x
$$

$$
1+\log _{a} b=x
$$

$$
\log _{a} b=(x-1)
$$

We know that
$\log _{a} b \times \log _{b} a=1$
$\log _{b} a=\frac{1}{\log _{a} b}$
$\log _{b} a=\frac{1}{(x-1)}$
$\log _{b}(a b)=\log _{b} a+\log _{b} b$
$=\frac{1}{x-1}+1$
$=\frac{x+x-1}{(x-1)}$
$\log _{b}(a b)=\frac{x}{(x-1)}$
[131] In a certain business A and B received profit in a certain ratio B and C received profits in the same ratio. If A gets ₹ 1600 and C gets $₹ 2500$ then how much does B get?
(a) ₹ 2,000
(b) ₹ 2,500
(c) ₹ 1,000
(d) ₹ 1,500

Answer:
(a) Here $A: B:: B: C$

$$
\begin{aligned}
\frac{A}{B} & =\frac{B}{C} \\
B^{2} & =A \times C
\end{aligned}
$$

[Chapter \ln 1] Ratio and Proportion, Indices...

Given $A=₹ 1600$ and $C=₹ 2500$
$B^{2}=1600 \times 2500$
$B=\sqrt{1600 \times 2500}$
$=40 \times 50$
= ₹ 2,000
[132] The ratio of two quantities is $15: 17$. If the consequent of its inverse ratio is 15 , then the antecedent is;
(a) 15
(b) $\sqrt{15}$
(c) 17
(d) 14

Answer:
(c) The Ratio of two Quantities $=15: 17$

Inverse Ratio of $15: 17=17: 15$
Here $\quad a: b=17: 15$
$a: 15=17: 15$
$\frac{a}{15}=\frac{17}{15}$
$a=17$
then Antecedent $=17$
[133] The salaries of A, B and C are in the ratio $2: 3: 5$. If increments of $15 \%, 10 \%$ and 20% are allowed respectively to their salary, then what will be the new ratio of their salaries?
(a) $3: 3: 10$
(b) $10: 11: 20$
(c) $23: 33: 60$
(d) Cannot be determined

Answer:
(c) Here The Ratio of the salaries of A, B, C are $2: 3: 5$

Let Salary of $A=200$
Salary of $B=300$
Salary of $C=500$

3.74 Solv ed Scanner CA Foundation Paper - 3A (New Syllabus)

After Increment
The New Salary of $A=200+15 \%$ of 200

$$
\begin{aligned}
& =200+30 \\
& =230
\end{aligned}
$$

The New Salary of $B=300+10 \%$ of 300

$$
=300+30
$$

$$
=330
$$

The New Salary of $C=500+20 \%$ of 500

$$
=500+100
$$

$$
=600
$$

New Ratio of the Series of A, B, C are
= 230 : 330 : 600
= $23: 33: 60$

